
Calculating pFq

Abstract

The generalized hypergeometric function pFq (a;b|z) is susceptible to various numerical evaluation
techniques. Here we attempt to give effective evaluation strategies for unrestricted z when the param-
eters a,b are not too big. The techiniques considered are rigorous, that is, they produce a proven
enclosure of the value of the function. Our techniques work well when the max(||a||, ||b||) does not
exceed the roughly the logarithm of the working bit precision.

1 Definitions

For a = a1, . . . , ap and b = b1, . . . , bq, set (a)n := Γ(a+ n)/Γ(a) and (a)n :=
∏
i(ai)n and define

pFq

(
a
b

∣∣∣z) :=

∞∑
n=0

(a)n
(b)n

zn

n!
(1.1)

The function is undefined when any bi is 0,−1,−2, . . . , i.e. Γ(b) :=
∏
i Γ(bi) is infinite. When either z

or 1/Γ(a) is zero, the series terminates and (1.1) provides a perfectly reasonable definition in this case.
Since the difference in parameter counts q + 1 − p controls the most important properties of these

functions, set d = q + 1 − p for any p and q. The series (1.1) defines an entire function of z for d > 0
and diverges for d < 0. For d < 2, the hypergeometric function can be defined in the non-terminating
case on a section of the Riemann surface of log(−z) by

pFq

(
a
b

∣∣∣z) =
Γ(b)

Γ(a)

∫ +i∞

−i∞

Γ(a + s)Γ(−s)
Γ(b + s)

(−z)s ds
2πi

, | arg(−z)| < (2− d)π2 . (1.2)

When d = 0 the branch structure is even richer due to a singularity at z = 1 and the Riemann surface
of log is no longer sufficient to describe a branch. The integer d can also be viewed as a measure of
the difficulty in evaluating the function: d = 0 can be handled by various connection formulas with
convergent series, and the function poses more difficulties as d moves away from 0 due to increasingly
more difficult essential singularities. The standard quantity σ = Σ(b) − Σ(a) is also relevent when
d ≥ 0.

Since functions accept numbers and not points on Riemann surfaces, we will use pFq = pF
+
q to

denote the usual branch with continuity from below R+ and pF
−
q for the non-standard continuity from

above R+. Whenever a possibly infinite quantity Γ(ai− aj) appears in a formula 1 that formula should
be interpreted via a limiting case of the general formula. Also, âi denotes the length p− 1 vector with
the ith entry omitted.

The imaginary unit is denoted by i =
√
−1, and e = 2.718 . . . is Euler’s number.

1that is, when the list a has duplicates modulo Z
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2 The case d = 0

Here we have several usual transcendental functions, rational possibilities, and algebraic possibilities.

3F2

(
1, 2, 3
4, 5

∣∣∣z) =
36

z3
+

90

z2
− 6

z
+

(
36

z4
− 36

z2

)
log(1− z)− 72

z3
Li2(z),

3F2

(
5, 4, 3
2, 1

∣∣∣z) =
140

(1− z)9
− 315

(1− z)8
+

240

(1− z)7
− 70

(1− z)6
+

6

(1− z)5
,

2F1

(
−1

6 ,
1
6 ; 1

2 |z
)

= 1
2

(√
1− z +

√
−z
)1/3

+ 1
2

(√
1− z −

√
−z
)1/3

.

In general pFp−1(z) has singularities at z = 1 and z = ∞ with a standard branch cut along the real
axis [1,∞]. For agreement with the usual transcendental functions, the standard value on the branch
cut is determined by continuity from below.

2.1 inside unit circle

For arguments sufficiently inside the unit circle, we can just sum the series. Besides the implementation
details of how to actually sum the series, there is not much else to say here.

2.2 outside unit circle

The residues on the left of (1.2) give

pFp−1

(
a
b

∣∣∣z) =

p∑
i=1

Γ(b)Γ(âi − ai)
Γ(b− ai)Γ(âi)

(−z)−aipF−p−1

(
ai, 1 + ai − b
1 + ai − âi

∣∣∣1
z

)
(2.1)

and for arguments sufficiently outside the unit circle we can just sum the series on the right.

2.3 near unit circle, away from one

The hypergeometric function can be evaluated non-rigorously near the the unit circle using various
sequence transformations or Padé approximations. The series may be evaluated rigorously via a con-
vergent series for any z 6∈ [1,∞] by the right hand side of

pFp−1

(
a
b

∣∣∣z) = (1
2 + 1

2

√
1− z)−2ap

∞∑
n=0

un

(
1−
√

1− z
1 +
√

1− z

)n
(2.2)

However, since computation of the un’s is a bit expensive, it should only be used when absolutely
neccessary. Furthermore, the convergence rate is only acceptable sufficiently far away from the branch
cut [1,∞]. The algebraic prefactor is not strictly necessary but there is good reason for it. It is present
in many quadratic transformation formulas in special cases and has the effect of lowering the order of
the recurrence relation for un by one.

2.4 near one

This is the most interesting case as the function can fail to be defined at one. The existence of F (1) is
determinded by <(σ) > 0. If σ is not an integer we have

pFp−1

(
a
b

∣∣∣1− z) =

∞∑
n=0

un

(
a
b

)
zσ+n +

∞∑
n=0

vn

(
a
b

)
zn (2.3)

with the u1, u2, . . . determined from recurrences by u0 = Γ(−σ)Γ(b)/Γ(a) and the vp−1, vp, . . . are
determined from recurrences of order p − 1 by v0, . . . , vp−2. Thus the difficulty is computing these
v0, . . . , vp−2. Gauss derived a formula for v0 when p = 2.

If σ is an integer, then at most one log(z) enters into the series.
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2.4.1 generic approach

We simply evaluate Equation (2.3) and its derivatives up to and including order p − 1 at z = 1/4 to
solve for the u0, v0, . . . , vp−2. The explicit formula for u0 is surprisingly useless in this approach.

2.4.2 Buehring

Here we sum the first m terms of Equation (1.1) and use a formula derived by Buehring to sum the
remaining terms. Since we will be dealing with logarithmically convergent series (when z = 1) in both
sums, it is important to balance the choice of m between the two to ensure a sub-exponential algorithm.
The basic idea is that although the convergence of the series Σnn

−m is ultimately slow (logarithmic),
if m is large enough relative to the target precision, the “slow” part of the sum is never reached.

We have (Equations (2.7) and (2.9) in “analytic continuation of the generalized hypergeoemtric
series near unit argument with emphasis on the zero-balanced series” by Buehring and Srivastava)

∞∑
n=m

(a)n
(b)n

zn

n!
=

Γ(b)

Γ(a)
zm

∞∑
k=0

Γ(a +m+ k)

Γ(b +m+ k)

zk

Γ(1 +m+ k)

=
Γ(b)(ap)m

Γ(âp)
zm

∞∑
k=0

Ak

(
âp
b

)
2F̃1

(
1, ap +m

1 + σ + ap +m+ k

∣∣∣z) (2.4)

where the Ak(âp;b) are independent of m and are polynomials in a1, . . . , ap−1, b1, . . . , bp−1. They can
be defined in the base case p = 2 as

Ak

(
a1

b1

)
=

(1− a1)k(b1 − a1)k
k!

and inductively for larger p by Hadamard and Cauchy products. After all is said and done, the Ak
satisfy an order p− 1 recurrence and are bounded as

Ak
k!
�
∑
i<p

kσ+ap−1−ai (2.5)

Convergence of the tail series is ensured by |1− 1/z| < 1 and m+ <(ai) > 0 for all i < p since

k! 2F̃1

(
1, ap +m

1 + σ + ap +m+ k

∣∣∣z)� k−σ |1− 1/z|k + k−m−σ−ap .

In reality the majorant method will probably produce a much worse explicit bound |Ak/k!| ≤ ckµ

so we are balancing the sum of the first m terms of a sum whose terms are like n−1−σ with another
series that we can only prove has terms like kµ−m−σ−ap . Any reasonable overestimation of µ can be
compensated by a larger m. Finally, in order to sum in total no more than O(d) terms for d digit
accuracy, it probably suffices to take m ≈ d for reasonable parameter ranges.

2.4.3 hybrid approach for σ 6∈ Z

The necessary coefficients u0 (respectively v0, . . . , vp−2) in (2.3) may be evaluated by combining (2.4)
(with z replaced by 1− z) for m = 0 (respectively large m) with the expansion

2F̃1

(
1, ap +m

1 + σ + ap +m+ k

∣∣∣1− z) =
Γ(−σ − k)

Γ(ap +m)

∞∑
j=0

(σ + ap +m+ k)j
j!

zσ+k+j

+
−1

Γ (σ + ap +m+ k)

∞∑
j=0

(ap +m)j
(−σ − k)j+1

zj .

(2.6)
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The basic idea is that
m−1∑
n=0

(a)n
(b)n

(1− z)n

n!
≈ v0 + v1z + v2z

2 + · · · . (2.7)

This is no help in evaluating the un, but those can be found easily. We have

F (1− z) =
m−1∑
n=0

(a)n
(b)n

(1− z)n

n!
+

Γ(b)(ap)m
Γ(âp)

(1− z)m
∞∑
k=0

Ak

(
âp
b

)
2F̃1

(
1, ap +m

1 + σ + ap +m+ k

∣∣∣1− z)

=
m−1∑
n=0

(a)n
(b)n

(1− z)n

n!
+

Γ(b)(ap)m
Γ(âp)

(1− z)m
∞∑
k=0

Ak

(
âp
b

)
Γ(−σ − k)

Γ(ap +m)

∞∑
j=0

(σ + ap +m+ k)j
j!

zσ+k+j

+
Γ(b)(ap)m

Γ(âp)
(1− z)m

∞∑
k=0

Ak

(
âp
b

)
−1

Γ (σ + ap +m+ k)

∞∑
j=0

(ap +m)j
(−σ − k)j+1

zj .

Taking m = 0 and equating non-integral powers of z gives

∞∑
n=0

unz
σ+n =

Γ(b)

Γ(âp)

∞∑
k=0

Ak

(
âp
b

)
Γ(−σ − k)

Γ(ap)

∞∑
j=0

(σ + ap + k)j
j!

zσ+k+j ,

so that in particular u0 = Γ(−σ)Γ(b)/Γ(a) and in general

un =
Γ(b)

Γ(âp)

∑
k+j=n

Ak

(
âp
b

)
Γ(−σ − k)

Γ(ap)

(σ + ap + k)j
j!

.

Equating integral powers of z gives

∞∑
n=0

vnz
n =

m−1∑
n=0

(a)n
(b)n

(1− z)n

n!
+

Γ(b)(ap)m
Γ(âp)

∞∑
`=0

(−m)`
`!

z`
∞∑
k=0

Ak

(
âp
b

)
−1

Γ (σ + ap +m+ k)

∞∑
j=0

(ap +m)j
(−σ − k)j+1

zj ,

or, for arbitrary m,

vi − [zi]
m−1∑
n=0

(a)n
(b)n

(1− z)n

n!
=
∑
`+j=i

Γ(b)(ap)m
Γ(âp)

(−m)`
`!

∞∑
k=0

Ak

(
âp
b

)
−1

Γ (σ + ap +m+ k)

(ap +m)j
(−σ − k)j+1

=
Γ(b)(ap)m

Γ(âp)Γ (σ + ap +m)

i∑
j=0

(ap +m)j(−m)i−j
(i− j)!

∞∑
k=0

Ak

(
âp
b

)
−1

(σ + ap +m)k (−σ − k)j+1

This formula for the vi is as effective as the series in the previous section. Another formula for the vi
follows by noting that both sides of (2.3) can be differentiated, which yields

i!(−1)ivi

(
a
b

)
=

(a)i
(b)i

v0

(
a + i
b + i

)
.

Combining this with the above formula for v0 gives

i!(−1)ivi

(
a
b

)
=

(a)i
(b)i

(
m−1∑
n=0

(a + i)n
(b + i)n

1

n!
+

Γ(b + i)Γ(ap + i+m)

Γ(a + i)Γ(σ + ap +m)

∞∑
k=0

Ak

(
âp + i
b + i

)
1

(σ − i+ k)(σ + ap +m)k

)

=
m−1∑
n=0

(a)n+i

(b)n+i

1

n!
+

Γ(b)Γ(ap + i+m)

Γ(a)Γ(σ + ap +m)

∞∑
k=0

Ak

(
âp + i
b + i

)
1

(σ − i+ k)(σ + ap +m)k
.
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Finally, replacing m by m− i gives the succinct formula

i!(−1)ivi

(
a
b

)
=

Γ(b)Γ(ap +m)

Γ(a)Γ(σ − i+ ap +m)

∞∑
k=0

Ak

(
âp + i
b + i

)
1

(σ − i+ k)(σ − i+ ap +m)k

+
∂i

∂zi

∣∣∣
z=1

m−1∑
n=0

(a)n
(b)n

zn

n!
.

(2.8)

When <(σ) ≤ i so that the coefficient of zi on the left hand side of (2.7) diverges as m tends to ∞,
there is cancelation between the two sums on the right hand side of (2.8). Thus, it should not be used
in this case.

3 The case d < 0

We shall abuse the notation and redefine d = |d| in this section. This strange case includes

∞∑
k=0

k!xk =

∫ ∞
0

e
−t

1− xt
dt, x 6∈ (0,∞)

∞∑
k=0

k!2x2k+2 =

∫ ∞
0

(
2e−t sin−1 tx

)2
dt, x ∈ ?

∞∑
k=0

(−1)k2−2k(2k)!

k!
x2k+1 =

√
πe1/x2erfc (1/x) , <x > 0

The usual non-rigorous method of approximately summing these series is the “summation with
optimal truncation”, that is, the sum is truncated immediately after the terms start to increase in
absolute value. Whether we have a method of bounding the error or not, this method suffers from an
obvious drawback: it can only deliver a limited amount of precision as the optimal truncation point is
independent of the target precision. As for rigorous evaluation, the formal series is divergent except
for zero argument or terminating parameters and is 1/d–Borel summable in a range of directions.
As in “The Borel Sum of Divergent Barnes Hypergeometric Series and its Application to a Partial
Differential Equation” by Kunio Ichinobe, this leads to the equality (1.2), or by the residues on the left
of the integration path,

pFq

(
a
b

∣∣∣z) =

p∑
i=1

Γ(b)Γ(âi − ai)
Γ(b− ai)Γ(âi)

(−z)−aiq+1Fp−1

(
ai, 1 + ai − b
1 + ai − âi

∣∣∣(−1)d

z

)
. (3.1)

The series on the right are convergent. For pF
−
q , we should take (−1/z)ai in place of (−z)−ai .

The difficulty here is when |z| is so small that the convergent series on the right hand side cannot
be summed. There is also great cancelation among the terms of the right hand side for small |z|. In
this case, a direct evaluation of the Laplace integral defining the Borel sum should be preferred. This
proceeds as follows. For any “direction” ω with <ω > 0, we have

k! =

∫ ∞
0

e
−ωt(ωt)kωdt

Divide each term of (1.1) by (dn)! to obtain the convergent series

F̂ (x) :=
∞∑
n=0

ddn(a)n
(dn)!(b)n

xn

n!
.
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Then, at least formally, with k = dn, we have

pFq

(
a
b

∣∣∣z) =

∫ ∞
0

e
−ωtF̂ (z(ω/d)dtd)ωdt.

The integrand has singularities at t = d/ω · z−1/d · (e2πi1/d, . . . , e2πid/d) and ω must be chosen so that
none of these singularites lie on the path of integration, that is zωd 6∈ R+.

In order to compute the usual branch of (3.1), that is, with continuity from below along the positive
real axis, it suffices to take

arg 1/z − 2π

d
< argω <

arg 1/z

d
, arg 1/z ≥ 0

arg 1/z

d
< argω <

arg 1/z + 2π

d
, arg 1/z < 0

Note also that these formulas are not sensitive to the choice of argument for negative real z, that is,
arg−1 = −π works equally as well as the usual choice arg−1 = π.

Finally, when z ranges over a ball containing zero, a fixed direction ω cannot be determined, and
we should evaluation the function by using the obvious expansion (integration by parts in the Laplace
integral or a contour shift in the Melin-Barnes integral) to the optimal truncation point m

pFq

(
a
b

∣∣∣z) =

m∑
n=0

(a)n
(b)n

zn

n!
+

(a)m
(b)m

zm

m!
p+1Fq+1

(
a +m, 1

b +m, 1 +m

∣∣∣z) .

The Laplace integral for the second term on the right hand side needs to be bounded for some valid
direction ω. For a given arbitrary z we can always choose an ω with |ω| = 1, and, for example,

| argω| ≤ π

3 +
√
d− 1

, and

| arg−zωd| ≤ max(0, 19− 2d)
π

24
.

These conditions reduce the problem to bounding F̂ (x) on a sector disjoint from its branch cut [1,∞).
The quantity F̂ (z(ω/d)dtd) can be bounded in absolute value by the form ?t? by combining (2.2) for
small t and (2.1) for large t, and e

−ωt is bounded by e
−<ωt.

3.1 limiting cases

In formula (4.5) below we need to deal with limiting cases of pFq for p > q+ 1, and the resummation of
series containing logs introduces some minor technicalities. In this case, the formal 1/d–Borel transform
B1/d : f(z) 7→ f̂(ξ) is defined on monomials as

B1/d

(
zλ

log(z)j

j!

)
=

j∑
i=0

di
rΓ(i)(dλ+ 1)

i!
ξλ

log(ξ)j−i

(j − i)!
, rΓ(i)(s) :=

di

dsi
1

Γ(s)

and extended to formal sums via linearity. The Laplace transform formally inverts the Borel transform:
for any direction ω with <ω > 0, we have the formal identity

f(z) =

∫ ∞
0

e
−ωtf̂(z(ωt)d)ωdt.
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4 The case d > 0

This case has the prototypical 0F2

(
1
3 ,

2
3 |z
)

example

∞∑
n=0

33n+1zn

(3n)!
=
∑
ζ3=1

e
3ζz1/3 . (4.1)

The series may be summed for any argument, but the problem for large |z| is that many terms may be
required before the partial sums start to approach the true value. The right hand side of (4.1) may be
more effective due to the fact that e

z, while still being defined by 0F0(z), has easy argument reduction
to a small box around the origin. The ratio of successive terms is

z

(n+ 1)(n+ 1
3)(n+ 2

3)
∼ z

n3

and approximately |z|1/3 terms have to be summed before the terms start to decrease. In this case, the
formal expansion

pFq

(
a
b

∣∣∣z) ?
=

p∑
i=1

Γ(b)Γ(âi − ai)
Γ(âi)Γ(b− ai)

(−z)−aiq+1Fp−1

(
ai, 1 + ai − b
1 + ai − âi

∣∣∣(−1)d

z

)
+
∑
ζd=1

cζ
Γ(b)

d
1
2 (2π)

d−1
2 Γ(a)

e
dζz1/d(ζz1/d)

d−1
2
−σ
(

1 +
u1

ζz1/d
+

u2

ζ2z2/d
+ · · ·

)
,

(4.2)

which consists of q + 1 divergent series, might useful (recall that p + d = q + 1). The first p series are
hypergeometric and 1/d–Borel summable. The last d series in z−1/d are 1–Borel summable, and the
coefficients ui, which are polynomials in a and b, satisfy recurrences of order q with u0 = 1 sufficient to
define the whole sequence. According to E. M. Wright in “The Asymptotic Expansion of the Generalized
Hypergeometric Function”, c1 = 1 and the ui may also be defined by

(2π)
d−1
2 d

d−1
2
−σ

d
1
2ddnn!

(a)n
(b)n

∼
∞∑
i=0

diui

Γ
(
1 + dn− d−1

2 + σ + i
) , n→∞.

Since just one term (ζ = 1) on the right hand side of (4.2) is the overwhelmingly dominant term of
the sum in most cases, miscalculations in the summation of the divergent series can easily go unnoticed.
Thus it is judicious for testing purposes to express each of the divergent series in terms of convergent
series. In doing so we will give a precise definition of 1 + u1z + · · · and a correct form of (4.2).
Unfortunately, Wright’s results are only useful here when d is 1 or 2: the two asymptotically greatest
terms have cζ = 1, while the remaining d−2 terms of smaller order have larger cζ . Thus, the non-trivial
cζ are hidden behind two levels of overdominant expansions, and miscalculations of the cζ are even more
likely to go unnoticed 2.

4.1 the function pUq

The resummation of the divergent series Σnunz
n starts with the function Û(ξ) =

∑∞
n=0 unξ

n/n! with

non-zero radius of convergence. Any singularity of Û(ξ) stands in the way of resumming Σnunz
n. With

ξ∂ξ on the left, the differential equation for Û(ξ) has the form

q+1∑
i=0

(ξ∂ξ)
iΦi(ξ)Û(ξ) = 0, where ξΦq+1(ξ) = (ξ − d)p((ξ − d)d − (−d)d).

2The Ma. . . computer algebra systems assume that cζ = 0 for ζ 6= 1 and d > 2.

7



Thus there are p+ d− 1 singularities at the center or on the perimeter of the circle centered at ξ = d
with a radius of d, and we have the following lemma with θ defined as

θ :=

{
π
2 + π

d , d > 1

π, d = 1
.

Lemma 4.1. The function Û(ξ) satisfies a monic linear homonogenous differential equation of order q+
1 with rational coefficients that are regular and bounded on the sector | arg(−ξ)| < θ. The denominator
of these rational functions may be taken to be Φq+1(ξ).

We are lucky that singularities are only present in the differential equation in <ξ > 0, so we can
define a continuous sum away from R+. On the Riemann surface of log, this means that we can sum
past | arg(−z)| ≤ π, but not by much, and by a lesser amount with larger d.

Lemma 4.2. For a direction ω chosen so that <ω > 0 and | arg(−zω)| < θ,

pUq

(
a
b

∣∣∣z) :=

∫ ∞
0

e
−ωtÛ(zωt)ωdt

defines an analytic function on C \R+ such that for any ζ with ζd = 1 a solution of the hypergeometric
differential equation is given by

fζ(z) := e
dζz1/d(ζz1/d)

d−1
2
−σ

pUq

(
a
b

∣∣∣ 1

ζz1/d

)
.

The parameter symmetries in the following lemma indicate that a more symmetric defintion of the
U(z) series is in order. For now we keep the (a;b) of the original hypergeometric differential equation,
but a notation where the following symmetry is self-evident would be more desirable.

Lemma 4.3. pUq

(
a
b

∣∣∣z) = pUq

(
1− bi + a

1− bi + (1, b̂i)

∣∣∣z).

Lemma 4.4. Set σi = Σbi − Σai so that σ1 = σ and σ0 = d− 1. For any | arg(−z)| ≤ π, we have the
asymptotic expansion in integral powers of z as z → 0,

pUq

(
a
b

∣∣∣z) ∼ 1 +

(
(d− 1)(d− 11)

24d
+
σ1

d
+
σ2

1

2d
− σ2

2

)
z

+

(
(d− 1)

(
d3 − 23d2 + 359d− 769

)
1152d2

+

(
d2 − 24d+ 47

)
σ1

24d2
+

(
d2 − 12d+ 95

)
σ2

1

48d2

−
(
d2 − 12d+ 47

)
σ2

48d
+

5σ3
1

6d2
− σ1σ2

d
+
σ3

6
+

σ4
1

8d2
− σ2

1σ2

4d
+
σ2

2

8

)
z2 + · · · .

Remark 4.5. We have 0U2

(
1
3 ,

2
3 |z
)

= 1 and the following approximation of the size of the discontinuity
in 0U2

(
1
3 ,

1
2 |z
)
, with a plot of the imaginary part of U(z) shown below.

0U2

(
1
3 ,

1
2 |x− εi

)
− 0U2

(
1
3 ,

1
2 |x+ εi

)
2i

∼

e
− 9

2x sin
(

2π
9 −

3
√

3
2x

)
, x small

1
4Γ
(

2
3

)√
3
π x

1/6, x large
, x > 0.
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4.2 solutions with prescribed asymptotics

The q + 1 functions Fβ(z) := z1−β
pFq((1, 1− β + a); 1− β + (1,b)|z) are 3 a basis for the solutions of

the hypergeometric differential equation for β ∈ (1,b) = 1, b1, . . . , bq. A restatement of (3.1) gives the
reciprocal algebraic solutions.

(−z)−aiq+1F
−
p−1

(
ai, 1 + ai − b
1 + ai − âi

∣∣∣(−1)d

z

)
=

((−1)d+1z)ai

(−z)ai
Γ(1− b)Γ(1 + ai − âi)

Γ(1− âi)Γ(1 + ai − b)
F1(z)

+

q∑
j=1

((−1)d+1z)ai+1−bj

(−z)aiz1−bj
Γ(bj − (1, b̂j))Γ(1 + ai − âi)

Γ(bj − âi)Γ(1 + ai − (1, b̂j))
Fbj (z)

(4.3)

Discontinuities on R in the connection coefficients have already appeared, and we write ± = 1
πi(log(z)−

log(−z)) and ∓ = −± = 1
πi(log(−z)− log(z)). For example,

zb(−z)−b = e
±πib

z−b(−
√
z)2b = e

∓2πib

z−b(iz1/4)4b = e
2πib

((−1)d+1z)ai

(−z)ai
=

{
e
±πiai , d odd

1, d even

The connection between the p algebraic asymptotic solutions and the Fβ(z) is given in (4.3). The
remaining d asymptotic solutions are the fζ(z) of Lemma 4.2. The continuity of these functions is
shown in Figure 1 and may be summarized as

1. fζ(z) is discontinuous on R− for all ζ (thick black arrows).

2. f1(z) is discontinuous on R+ because U(z) is (squiggly line on R+).

3. f−1(z) (for d even) is discontinuous on R+ because (−z1/d)
d−1
2
−σ is (squiggly line on R−).

4. fζ(z) is otherwise continuous.

5. fζ(R−+εi) and f
e2πi/dζ(R−−εi) can generally be identified, i.e. glued together. This fails (squiggly

line on R−) only when d is odd and the two sections ζz1/d and e
2πi/dζz1/d cross R−, thus incurring

the discontinuity of (ζz1/d)
d−1
2
−σ.

Therefore, we will continue determining the connection coefficients on each of the two half planes
C− = {z|=z < 0}, where ± = −1, and C+ = {z|=z > 0}, where ± = +1, and leave the determination
of the connection coefficients on R, which is largely a matter of convention, to the next section. For a

3with limiting cases when the list (1,b) has duplicates modulo Z

9



z1/d

e2πi/dz1/d

−e−πi/dz1/d

−eπi/dz1/d

e−2πi/dz1/d

+

+

+

+ +

−

−

−

− −

z1/d

e2πi/dz1/d

−z1/d

e−2πi/dz1/d

+

+

+

+

−

−

−

−

Figure 1: fζ glue and cuts for d odd (Left) and d even (Right)

given dth root of unity ζ (and z ∈ C \ R), determine the even integer ` from π` = ∓d arg(ζ∓1) and the
integer k from πk = ∓d arg(−ζ∓1). The fζ in the Fβ basis are given by

fζ(z) =
e
πi sgn(`±1)( d−1

2
−σ)

d−
1
2 (2π)

d−1
2

Γ(1− b)

Γ(1− a)
F1(z) +

q∑
j=1

e
kπi(1−bj) Γ(bj − (1, b̂j))

Γ(bj − a)
Fbj (z)

 . (4.4)

We will prove this first for the asymptotically smallest solution on each half plane, which corresponds
to the shaded region in Figure 1. Note that since these regions straddle R−, they correspond to two
different values of ζ when d is odd. We would like to show these solutions in the Fβ(z) basis are

f−1(z) = (4.4) with sgn(`± 1) = ∓, and k = 0, d even,

f−e∓πi/d(z) = (4.4) with sgn(`± 1) = ±, and k = ∓, d odd.

These identities follow by observing that the right hand parenthesized sums are the sums of all s-residues
of

−Γ(1− s− (1,b))

Γ(1− s− a)
zs ×

{
1, d even

e
∓πis, d odd

.

The asymptotic value of the integral around all poles can be deduced by deforming the contour to an
essentially vertical one passing through the saddle point near s = −z1/d and tending to ±i∞ along the
path of steepest descent. The equality holds due to the uniqueness of the minimal solution.

Now, since the Fβ(z) are either entire or have simple prefactors as z makes one trip around the
origin, it is a simple matter to transform these minimal solutions back to an arbitrary fζ(z) by moving
z around the origin a few times in either direction and using the C+ and C− gluings in point 5. This
gives (4.4) and these d expansions along with the p expansions in (4.3) give a (d+ p)× (d+ p) matrix

10



whose inverse has first row 4

pFq

(
a
b

∣∣∣z) =

p∑
i=1

Γ(b)Γ(âi − ai)
Γ(âi)Γ(b− ai)

(−z)−aiq+1F
−
p−1

(
ai, 1 + ai − b
1 + ai − âi

∣∣∣(−1)d

z

)
+
∑
ζd=1

c
(±)
ζ (a;b)

Γ(b)

d
1
2 (2π)

d−1
2 Γ(a)

e
dζz1/d(ζz1/d)

d−1
2
−σ

pU
−
q

(
a
b

∣∣∣ 1

ζz1/d

)
,

(4.5)

and this is the correct form of (4.2). The c
(±)
ζ here are interesting combinatorial exponential sums:

with the even integer ` determined uniquely as before from π` = ∓d arg(ζ∓1), they are

c
(±)
ζ (a;b) =

∑
0≤n1,...,np

0≤m1,...,mq≤1
Σn+Σm=(|`±1|−1)/2

e
2πi sgn(`±1)(n·a+m·(b+ 1

2
)).

The form of these exponential sums follows from, for any p ≥ 1, x ∈ Cp, y ∈ Cq and 0 ≤ w ≤ q,

∑
0≤n1,...,np

0≤m1,...,mq≤1
Σn+Σm=w

xn(−y)m =

p∑
j=1

w∑
i=0

xi+p−1
j Πw−i(−y)

Π(xj − x̂j)

=

p∑
j=1

q∑
i=1

xp−1
j Πw(−ŷi)Π(xj − ŷi)

Π(xj − x̂j)Π(yi − ŷi)
, for w < q,

which arise when inverting the matrix. Here, xn =
∏
i x

ni
i , Π(x) gives the product of the xi, and Πw(x)

is the wth symmetric polynomial in the xi. See, for example, Lemma 5.1 below.

4.3 real problems

Being the sum of q + 1 discontinuous functions, the right hand side of (4.5) miraculously represents a
continuous function. Here we simply make the observation that (4.5) remains valid if ± = 1

πi(log(z)−
log(−z)) (and the Fbj (z)) retain the standard counterclockwise continuity on R and the functions

q+1Fp−1 and pUq are evaluated with the nonstandard clockwise continuity. This is already present in
(4.3) for q+1F

−
p−1, and (4.4) gives fζ(z) the counterclockwise continuity, which gives pUq the clockwise

continuity: q+1Fp−1 and pUq need the clockwise continuity simply because 1/z flips the orientation.
There are many problems with the asymptotic formula for pFq(z) on R. First, on z > 0 the

asymptotically largest exponential term has a discontinuity due to that of pUq(z). Then, on z < 0 the
smallest exponential term has a discontinuity arising from the algebraic prefactor. The non-exponential
algebraic terms also have discontinuities on either side of R depending on the parity of d. Finally,
the most serious problem is that (4.5) implies that pFq(z) has infinitely many zeros in any sector
| arg(−z)| < ε for d > 2, and thus near z < 0 massive cancellation among the components of the
asymptotic formula is possible when d > 2.

The bad situation near z < 0 can be illustrated explicitly by continuing with the example of

4The coefficients may also be obtained with the partial fraction approach of “The Asymptotic Expansion of the Meijer
G-Function” by J. L. Fields.
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0F2

(
1
3 ,

1
2 |z
)
. For x > 0 a rearrangement of the three terms of (4.5) gives

0F2

(
1
3 ,

1
2 |−x

3
)

=
Γ
(

1
3

)
√

3π
e

3x/2x1/6 cos

(
π

18
+

3
√

3x

2

)
U(−e−2πi/3/x) + U(−e2πi/3/x)

2

+
Γ
(

1
3

)
√

3π
e

3x/2x1/6 sin

(
π

18
+

3
√

3x

2

)
U(−e−2πi/3/x)− U(−e2πi/3/x)

2i

+

√
3

2

Γ
(

1
3

)
√

3π
e
−3xx1/6U(−1/x).

(4.6)

What is to be gained from rewritting the formula this way? First, since the two fractions involving
U are just the real and imaginary parts of U , each of the three terms on the right hand side is a real
number. Second, since U(z) ∼ 1− 1

108z + · · · , it is clear that, as long as the value of the cosine is not
too small, a good relative approximation for x large is given by

0F2

(
1
3 ,

1
2 |−x

3
)
≈

Γ
(

1
3

)
√

3π
e3x/2x1/6 cos

(
π

18
+

3
√

3x

2

)

and that the zeros of F (z) on z < 0 occur approximately where the value of the cosine is zero. Finally,
however, this formula does not help much in evaluating F (z) near such a zero: the cosine term and sine
term cannot be simultaneously small and hence must cancel each other out at a zero of F (z). This is
detailed in the following table, which shows how close the zeros of F (−x3) are to the zeros of the cosine,
the magnitude of the first term in the “optimized” formula (4.6) at the roots, and the magnitude of the
first term in the plain formula (4.5) also at the roots. With xn ≈ 2π(9n+ 4)/(27

√
3) denoting the nth

root of F (−x3) on x > 0, we have

n
2π(9n+4)

27
√
3
−xn

1
324xn

|First term of (4.6)| |First term of (4.5)|

20 0.9805 6.024 · 1012 9.472 · 1015

25 0.9843 4.375 · 1016 8.529 · 1019

30 0.9869 3.280 · 1020 7.630 · 1023

35 0.9887 2.513 · 1024 6.794 · 1027

40 0.9901 1.957 · 1028 6.030 · 1031

45 0.9912 1.544 · 1032 5.338 · 1035

50 0.9921 1.230 · 1036 4.715 · 1039

In conclusion, the real roots of 0F2

(
1
3 ,

1
2 |−x

3
)

are a distance of approximately 1
324x

−1 away from the
roots of the cosine and the optimized formula only reduces the size of the first term by a miniscule
amount. Suppose we are at a root z = −x3 of 0F2

(
1
3 ,

1
2 |z
)

and would like to prove numerically that
|0F2

(
1
3 ,

1
2 |−x

3
)
| < 2−m. Since

|first term of (4.5)| ≈
Γ(1

3)

2
√

3π
e

3x/2x1/6,

|first term of (4.6)| ≈
Γ(1

3)

216
√
π
e

3x/2x−5/6,

the formulas (4.5) and (4.6) require O(x+m) bits of the U -factors, and thus are no better than (1.1),
which requires at least O(x) terms.
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4.4 the case q = 1

This includes all Bessel functions, Airy functions, and confluent functions, and it is worth mentioning
that the pUq series are hypergeometric.

0U1 (b1|z) = 2F0

(
−1

2 + b1,
3
2 − b1|

1
4z
)

,

1U1 (a1; b1|z) = 2F0 (1− a1, b1 − a1|z) .

5 The G function

The parameters are

� 0 ≤ n ≤ p and 0 ≤ m ≤ q
� a = (ααα,γγγ) ∈ Cp, ααα = a1, . . . , an, γγγ = an+1, . . . , ap

� b = (βββ,δδδ) ∈ Cq, βββ = b1, . . . , bm, δδδ = bm+1, . . . , bq

� ai − bj 6= 1, 2, . . . for any i ≤ n and j ≤ m, that is, Γ(1−ααα+ s) and Γ(βββ − s) share no poles.

� z ∈ C with z 6= 0

The possible paths in the definition Gm,np,q (z|ααα,γγγ;βββ,δδδ) =
∫ Γ(βββ−s)Γ(1−ααα+s)

Γ(1−δδδ+s)Γ(γγγ−s) z
s ds

2πi are

1. from −i∞ to +i∞, separating the poles of Γ(1 − ααα + s) from those of Γ(βββ − s), converges for
| arg(z)| < (m+ n− 1

2(p+ q))π

2. encircle the poles of Γ(βββ − s) clockwise

3. encircle the poles of Γ(1−ααα+ s) counterclockwise

By the shift s → s + 1, the function G((−1)p−m−nz) is a solution to a hypergeometric differential
equation:

(z∂z − b1) · · · (z∂z − bq)− (z∂z − a1) · · · (z∂z − ap)z = 0.

Thus it suffices to connect it to some pFq
5.

5.1 The case q > p

Set d = q − p. Path 2 gives

G(z) =

m∑
j=1

Γ(β̂ββj − bj)Γ(1 + bj −ααα)

Γ(γγγ − bj)Γ(1 + bj − δδδ)
zbj pFq−1

(
1 + bj − a

1 + bj − b̂j

∣∣∣(−1)p−m−nz

)
, (5.1)

and this is useful if |z| is not too large. We need the asymptotic expansion of G(z) for large z. What is
interesting here is that the poles of Γ(1−ααα+ s) do not even give a hint of the correct algebraic portion;
we have from (4.5),

G((−1)p−m−nz) =

n∑
i=1

h
(±)
i (ααα,γγγ;βββ,δδδ)

(2πi)p−n
Γ(ai − âi)Γ(1− ai + βββ)

Γ(ai − δδδ)
(−z)ai−1

qFp−1

(
1− ai + b
1− ai + âi

∣∣∣(−1)d

z

)

+
∑
ζd=1

g
(±)
ζ (ααα,γγγ;βββ,δδδ)

d
1
2 (2π)

d−1
2 (2πi)1+p−m−n

e
dζz1/d(ζz1/d)Σb−Σa− d−1

2 pUq−1

(
1 + bj − a

1 + bj − b̂j

∣∣∣ 1

ζz1/d

)
,

5or limiting cases thereof
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where the pUq−1’s on the right hand side are independent of the choice of j (Lemma 4.3), and the hi
and gζ are entire functions of the parameters.

h
(±)
i

(
ααα,γγγ
βββ,δδδ

)
=

m∑
j=1

sinπ(bj − γγγ) sinπ(ai − β̂ββj)
sinπ(bj − β̂ββj)

(2i)p−n ×

{
1, p−m− n odd

−e±πibj , p−m− n even

= e
−πi(Σγγγ+(m−1)ai) × some Laurent polynomial in e

2πi(a,b)

g
(±)
ζ

(
ααα,γγγ
βββ,δδδ

)
=

m∑
j=1

sinπ(γγγ − bj) c(±)
ζ (−a;−b̂j)

sinπ(β̂ββj − bj)
(2i)1+p−m−n ×

{
e
− pm(∓ζ∓)πibj , p−m− n odd

e
(pm(±ζ∓)±1)πibj , p−m− n even

= e
−πi(Σγγγ+Σβββ) × some Laurent polynomial in e

2πi(a,b)

where pm(w) := 1
πi(log(w) − log(−w)) so that ± = pm(z). The general form of these polynomials is

too complicated to be of use: they should be generated once the parameters counts m,n, p, q are fixed.
The following lemma is useful to see that the above trigonometric sums with denominator are in fact
entire exponential sums.

Lemma 5.1. Set x = x1, ..., xm with m ≥ 1. For any integer k,

m∑
i=1

xki
Π(xi − x̂i)

=


∑

n1,...,nm≥0
Σn=k+1−m

xn, k ≥ 0

∑
n1,...,nm<0
Σn=k+1−m

xn(−1)m−1, k < 0

Proof. Multiplying both sides by yk and summing over all k ≥ 0 turns the right hand side into
ym−1/Π(1 − yx) and the left and side into its partial fraction decomposition. The case k < 0 fol-
lows similarly.

5.2 The case q < p

Path 3 gives

G(z) =

n∑
i=1

Γ(ai − α̂ααi)Γ(1− ai + βββ)

Γ(ai − δδδ)Γ(1− ai + γγγ)
zai−1

qFp−1

(
1− ai + b
1− ai + âi

∣∣∣(−1)q−m−n

z

)
, (5.2)

and this is useful if |z| is not too small. However, since G(z|a;b) = G(1/z|1− b; 1− a) modulo branch
cut issues, there is no need whatsoever to consider this case.

5.3 The case q = p

The function is in general discontinuous on the unit circle. The expansion (5.1) is valid for |z| < 1, and
(5.2) is valid for |z| > 1.

6 The Γ function

We need to compute the Γ function, and its derivatives in limiting cases.
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7 implementation [section is boring, messy, incomplete]

7.1 transformations of differential equations

We use θ := θx := x∂x and note the non-commutative operator relation θxn = xn(θ+ n). We maintain
differential equation either in x and θ (with θ either on the left or right) or in x and ∂ (with ∂ on the
right). The relation between powers of θ and powers of ∂ is given by

θnxm =
n∑
i=0

S(i)
n (m)xm+i∂i,

xm+n∂n = xmθ(θ − 1) · · · (θ − (n− 1)) =: xmθ(n)

= (θ −m)(θ − (m+ 1)) · · · (θ − (m+ n− 1))xm

where v(n) denotes the falling factorial and the specialization m = 0 produces coefficients S(i)
n (0) which

are the Stirling numbers of the second kind.

7.1.1 rescale

For T (f(x)) = f(sξ), we have

T∂x = 1/s∂ξT ,

Tθx = θξT ,

Tx = sξT .

7.1.2 inflate

For T (f(x)) = f(ξs), it is best to work with the x− θx form.

T∂x = ξ1−s/s∂ξT ,

Tθx = 1/sθξT ,

Tx = ξsT .

7.1.3 Borel

For T = B1/d, it is best to work with the x− θx form.

Tθx = θξT ,

Tx−1/d = ξ−1/ddθξT ,

Tx−n/d = ξ−n/d(dθξ)
(n)T .

Lemma 7.1. If, for some polynomials pi, f(z) satisfies
∑n

i=0 pi(θz)z
if(z) = 0, then f̂(ξ) = B1/d(f(z))

satisfies
∑n

i=0(d(θξ − i))(d(n−i))pi(θξ)ξ
if̂(ξ) = 0.

7.1.4 shift

For T (f(x)) = f(ξ + s), it is best to work with the x− ∂x form.

T∂x = ∂ξT ,

Tθx = (1 + s/ξ)θξT ,

Tx = (ξ + s)T .
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7.1.5 Laplace

For (Tf)(x) = e
wx
∫ x

0 e
−wtf(t)dt, it is also best to work with the x− ∂x form where we can use

(∂x − w)(Tf)(x) = f(x).

7.2 majorant method

This is a terse summary of “Truncation Bounds for Differentially Finite Series” by Messarobba. We
would like to study the various functions

F (z) , F

(
1

z

)
, F (1− z) , (1 + z)−2apF

(
4z

(1 + z)2

)
, . . .

as convergent power series for |z| < 1 as this allows for the computation of F everywhere. In order to
evaluate these power series, we need bounds on the coefficients, and tight bounds are already difficult
to prove for 2F1 and 3F2. If we are not near the radius of convergence of these series, an overestimation
of the coefficients is acceptable if it allows us to actually get proven bounds.

Each of these functions f(z) satisfies a homogeneous linear differential equation P (f(z)) = 0 which
will we write in terms of θ = z∂z. Since zθ = (θ − 1)z, we can write the operator P with θ on the
left. When θ is on the left and z is on the right, it is easy to transform the differential equation to a
recurrsion on the coefficients. For example, for F (z) = 2F1 (a1, a2; b1|z) =

∑∞
n=0 unz

n, we have

P = (θ + b1 − 1)(θ)− (θ + a1 − 1)(θ + a2 − 1)z ⇔ un
un−1

=
(n+ a1 − 1)(n+ a2 − 1)

(n+ b1 − 1)(n)

7.2.1 coefficient recursions

Write the differential operator as P (z, θ) = θrpr(z)+· · ·+θp1(z)+p0(z) = Ps(θ)z
s+· · ·+P1(θ)z+P0(θ) ∈

F[z, θ] with θ on the left and assume that pr(0) 6= 0. Define the operator L(z, θ) = P (z, θ)pr(z)
−1 =∑∞

j=0Qj(θ)z
j and note that deg(Q0(θ)) = r and deg(Qj(θ)) < r for j > 0. Let λ ∈ F denote a fixed

root of Q0 such that none of λ− 1, λ− 2, . . . is a root of Q0. Let µ(ν) denote the multiplicity of ν as a
root of Q0 (or as a root of P0). For a double sequence {uλ+n,k}n,k≥0, let

u(z) =
∞∑
n=0

ν=λ+n

∞∑
k=0

uν,kz
ν logk z

k!
,

be a solution to P (z, θ)(u(z)) = 0. This is actually a polynomial in log z, so let τ(n) be a nondecreasing
integer-valued function of n satisfying uλ+n,k = 0 for k ≥ τ(n). We will see shortly that we can take
τ(0) ≤ µ(λ+ 0) and τ(n) ≤ τ(n− 1) + µ(λ+ n). In terms of the operator Sk, which shifts a sequence
{ak}k≥0 to {ak+1}k≥0, the differential equation says that

P0(ν + Sk)uν = −
s∑
j=1

Pj(ν + Sk)uν−j

Since P0(ν+Sk) = S
µ(ν)
k (c0+c1Sk+· · · ), this equation allows us to determine all uλ+n,k with k ≥ µ(λ+n)

once the initial values Eλ = {uλ+n,k | 0 ≤ k < µ(λ + n)} are determined. Considering all possible λ
gives r linearly independent solutions to P = 0.
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7.2.2 tail bounds

Let K < τ(∞) denote the higest power of log z occuring in u(z), and consider the truncation

ũ(z) =
N−1∑
n=0

K∑
k=0

uλ+n,kz
λ+n logk z

k!
,

and the normalized residual q(z) defined by P (z, θ)(ũ(z)) = Q0(θ)q(z). This has the form

q(z) =
s−1∑
j=0

K∑
k=0

qλ+N+j,kz
λ+N+j logk z

k!

where the qλ+N , . . . , qλ+N+s−1 can be computed from P (z, θ) and uλ+N−1, . . . , uλ+N−s.
Consider y(z) = pr(z)(ũ(z) − u(z)) as a solution of L(z, θ)(y(z)) = Q0(θ)(q(z)). Suppose that for

some n0 > 0 we have constructed power series â(z) =
∑

j>0 âjz
j , q̂(z) =

∑
n>0 q̂nz

n, and ŷ(z) =∑
n≥0 ŷnz

n with nonnegative coefficients satisfying

1. For all j > 0 and n ≥ n0,

n

τ(n)−1∑
t=0

∣∣∣∣[Xt]
Qj(λ+ n+X)

X−µ(λ+n)Q0(λ+ n+X)

∣∣∣∣ ≤ âj .
2. For all n ≥ n0 and k ≥ 0, |qλ+n,k| ≤ q̂n.

3. |yλ+n,k| ≤ ŷn for all n < n0 and k ≥ 0.

4. |yλ+n,k| ≤ ŷn for all n ≥ n0 and k < µ(λ+ n).

5. ŷ(z) satsifies
zŷ′(z) = â(z)ŷ(z) + q̂(z).

If all of these are true, we have |z−λy(z)| ≤ ŷ(z). The reason for dividing the differential equation by
pr(z) on the right is that degQj < degQ0, so we can expect finite values for the âj .

Now, we have
∞∑
j=1

Qj(θ)z
j =

P (z, θ)

pr(z)
−Q0(θ) =

P (z, θ)

pr(z)
− P (0, θ)

pr(0)
.

For all differential equations arising from hypergeometric functions considered here,
∑∞

j=1Qj(θ)z
j will

be a finite linear combination of functions of the form (i, k ≥ 0)

zi, z∂z
zi

(1− z)k
, z∂z log

(
1

1− z

)
,

z∂z
zi

(1− z2)k
, z∂z log

(
1

1− z2

)
, z∂z log

(
1 + z

1− z

)
,

all with nonnegative coefficients as power series in z.

Remark 7.2. This is not accurate for equations arising from Borel resummation, where the list needs
to be augmented by

z∂z log

(
1

1− αz

)
� z∂z log

(
1

1− |α|z

)
z∂z

zi

(1− αz)k
� z∂z

zi

(1− |α|z)k

17



The coefficients of the linear combination, say fj(θ), will be polynomials in θ. Bounding the com-
binations

n

τ(n)−1∑
t=0

∣∣∣∣[Xt]
fj(λ+ n+X)

X−µ(λ+n)Q0(λ+ n+X)

∣∣∣∣
for each j and for all n ≥ n0 will give a valid â(z) and a nice formula for ĥ(z) = exp

∫ z
0 â(z)/zdz. It

now suffices to choose a q̂(z) so that

ŷ(z) = ĥ(z)

∫ z

0

q̂(z)/z

ĥ(z)
dz

satisfies conditions 2 and 4.

7.3 series evaluation

For large enough τ , the solution takes the form

f(z) =
∞∑
i=0

τ−1∑
j=0

ui,jz
λ+i log(z)j

j!
,

and the coefficients ui,j satsify ui,j = 0 for j ≥ τ . Therefore, write ui =
∑τ−1

j=0 ui,jΛ
τ−1−j where

everything is modulo Λτ . Eventually the coefficients ui satisfy a relation of the form

un = a1un−1 + · · ·+ asun−s, ai ∈ F(n)[Λ] (7.1)

Let Mn ∈ F(n)[Λ]s×s be the companion matrix (with the ai on the first row) such that un
...

un−(s−1)

 = Mn

 un−1
...

un−s


Set f[N0,N1)(z) =

∑N1−1
i=N0

zλ+iui(log(z)) where ui(log(z)) denotes ui ∈ F[Λ] with Λτ−1−j replaced by

log(z)j/j!. For the derivative f (d)(z) of order d we have f
(d)
[N0,N1)(z)

?
...

 =

N1−1∑
i=N0

zλ+i−d(Λ + λ+ i)(d)
∏

i≥`≥N0

M`

 uN0−1
...

uN0−s

 (log(z))

where x(d) := x(x− 1) · · · (x− (d− 1)) on the right hand side denotes the falling factorial. Therefore, to
evaluate several derivatives of f , it suffices to take the first entry of the right hand side for several values
of d, where the products

∏
N0≤`<iM` can be reused. Furthermore, the final product

∏
N0≤`<N1

M(`),
when multiplied by the initial values uN0−1, . . . uN0−s, gives the final uN1−1, . . . , uN1−s, which are needed
for the estimation of the tail

∑∞
i=N1

ziui(log(z)).
To avoid either a catastrophic linear loss of precision when the ai are approximate quantities or a

slow algorithm when the ai are “small” exact quantities, the above sum should be evaluated via binary
splitting: that is, for example

7∑
i=0

zi
∏
i≥`≥0

M` = (M0 + zM1M0 + z2(M2 + zM3M2)M1M0)

+ z4(M4 + zM5M4 + z2(M6 + zM7M6)M5M4)M3M2M1M0.
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7.4 putting everything together

This section discusses the reliable evaluation of the solution and its derivatives f(z), f ′(z), . . . , f (δ−1)(z),
which can be writen as

f (d)(z) = f
(d)
[0,N0)(z) + f

(d)
[N0,N)(z) + f

(d)
[N,∞)(z)

where

f[N0,N1)(z) =
∑

N0≤i<N1,j

ui,jz
λ+i log(z)j

j!

The the quantities zλ+i log(z)j/j! for integers i and j need to be evaluated reliably. This is a problem
when z is zero or a ball containing zero.

The first block f
(d)
[0,N0)(z) includes those “problematic” terms ui,jz

λ+i log(z)j/j! where λ+ i is a root

of Q0(θ). These terms are problematic because the denominators of (7.1) could vanish, thus they should
be dealt with separately. For each of these terms we just evaluate zλ+i log(z)j/j! directly and take care
when z contains zero, where the sign of <(λ+ i) is relevent.

The next block also requires care with respect to the evaluation of log(z). What we actually get out
of the previous section is a reliable evaluation of

zd−N0−λf
(d)
[N0,N)(z) =

τ−1∑
j=0

ejΛ
τ−1−j ∈ C[Λ],

that is, we still have to evaluate
∑τ−1

j=0 ejz
λ+N0−d log(z)j/j! as reliably as possible. For this, it is helpful

if <(λ+N0 − d) > 0 which is why it is a good ideal to at least choose an N0 ≥ δ.
For the final block, the majorant method produces a power series B̂(z) =

∑∞
i=0 biz

i ∈ R≥0[z] with

zN B̂(z) majorizing the tail
∑∞

i=N ui,jz
i for all j < τ . Thus to bound |f(z)|+|f ′(z)|ε+· · ·+|f δ−1(z)|/(δ−

1)!εδ−1, we need to calculate, while working in ε modulo εδ, a majorant (in ε) of (z+ε)λ+N log(z+ε)j/j!
for each j < τ , add these up, and multiply the sum by B(z + ε). Since the derivatives of zδ log(z)j up
to and including order δ− 1 are continuous at z = 0, it suffices to steal zδ from the zλ+N . If the deficit
zλ+N−δ is not continuous at z = 0, the situation is hopeless anyways. For fixed δ we have

(z + ε)δ log(z + ε)j =
δ−1∑
k=0

cj,k(log(z))zδ−kεk +O(εδ)

for certain polynomials cj,k of degree j satisfying cj+1,k = log(z)cj,k +
∑k

`=1(−1)`−1ck−`/`.

7.5 Tight 2F1 bounds everywhere

The analysis is for real parameters a, b, c ∈ R, but it should be possible to do something for complex
parameters too.

With

f(w) = (1 + w)−2a
2F1

(
a, b
c

∣∣∣ 4w

(1 + w)2

)
=
∞∑
n=0

rnw
n, |w| < 1 (7.2)

we have r0 = 1, r1 = 4ab
c − 2a, and rn+1 = λ0(n)rn + (1− λ1(n))rn−1, where

λ0(n) =
2(2b− c)(n+ a)

(n+ 1)(n+ c)

λ1(n) =
2(1− 2a+ c)(n+ a)

(n+ 1)(n+ c)

19



The unit disk |w| < 1 is mapped into the whole complex z-plane minus [1,∞) by z = 4w
(1+w)2

, hence this

provides a method for computing the usual branch of 2F1 if we can bound the tails of the sum. Note
that λ0, λ1 → 0, and for the moment entertain the assumption that |λ0| ≤ λ1 ≤ 1 for all n:

|r2| = |λ0r1 + (1− λ1)r0|
≤ |λ0||r1|+ (1− λ1)|r0|
≤ (|λ0|+ 1− λ1) max(|r0|, |r1|)
≤ max(|r0|, |r1|).

Hence |rn| ≤ max(|r0|, |r1|) for all n by induction. For general real parameters a, b, c the inequality
|λ0(n)| ≤ λ1(n) is not possible for all n as singularities (either logarithmetic or algebraic) of the 2F1 at
z =∞ and z = 1 mean that the rn can grow like an arbitrarily large power of n.

To remedy this, consider r̃n := rnn
−µ for some arbitrary real µ. The transformed recurrence is

r̃n = λ̃0(n)r̃n−1 + (1− λ̃1(n))r̃n−2 where

λ̃0(n) =

(
n

n+ 1

)µ
λ0(n)

λ̃1(n) = 1−
(
n− 1

n+ 1

)µ
(1− λ1(n))

If |λ̃0(n)| ≤ λ̃1(n) ≤ 1 for all n ≥ n0, then it follows as above that rn ≤ max(|r̃n0 |, |r̃n0−1|)nµ for all
n > n0. There are two ways to turn this into an algorithm for bounding the tails. Either choose an n0

and compute a µ (not recommended), or since

λ̃0(n) = 2(2b− c)n−1 +O
(
n−2

)
λ̃1(n) = 2(1− 2a+ c+ µ)n−1 +O

(
n−2

)
we can choose any µ > −1 + 2a− c+ |2b− c| and compute an n0. This is an optimal bound on µ.

7.6 2F0 and resummation bounds

The calculation of 2F0 follows the process in Section 3. With f̂(ξ) =
∑∞

n=0
(a)n(b)n
n!2

ξn, the function

F (x) = e
ωx
∫ x

0 e
−ωtF̂ (zωt)dt is annihilated by (θ := x∂x)

(θ − 1)2θ − w(θ − 1)(z(θ − 2 + a)(θ − 2 + b) + θ − 1)x+ w2z(θ − 2 + a)(θ − 2 + b)x2

and for any x0 with x0 (1− wx0z) 6= 0 the function F̃ (x) = F (x+ x0) is annihilated by

x0 (1− wx0z) θ(θ − 1)(θ − 2) +

(θ − 1)(θ − 2)
(
θ (1− 2wx0z)− wx0(z(a+ b− 5) + 1) + w2x2

0z − 2
)
x+

w(θ − 2)
(
−zθ2 + (−z(a+ b− 6) + 2wx0z − 1) θ + wx0z(a+ b− 5)− (a− 3)(b− 3)z + 2

)
x2 +

w2z(θ − 3 + a)(θ − 3 + b)x3

In general, given f̂(ξ) we would like to compute limx→∞ ωe
−ωxF (x) where

F (x) := e
ωx

∫ x

0
e
−ωtf̂(z(ωt)d)dt,

F ′(x)− wF (x) = f̂(z(ωx)d).

Initial conditions for f̂(ξ) at ξ = 0 easily translate to initial condition for F (x) at x = 0 when
combined with F (0) = 0. Next, we integrate these initial conditions from 0 to some x0 to produce
F (x0), F ′(x0), . . . F (r+1)(x0) for some r. Finally, we need to estimate the tail

∫∞
x0

e
−ωtδ(t)dt where

δ(x) = F ′(x)− wF (x). Bounding the coefficients of the differential equation for δ gives a crude bound
of the form |δ(x)| < e

λ(x−x0)||〈δ(x0), δ′(x0), . . . , δ(r)(x0)〉|| for x > x0. If λ < <ω, then we are done.
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7.7 Tight 3F2 bounds near 1

Series expansions of solutions around z = 1 can be constructed as

∞∑
n=0

rn(1− z)n+λ

where λ = 0 or λ = b1 + b2 − a1 − a2 − a3 and rn+2 + κ1(n)rn+1 + κ0(n)rn = 0 where

κ0(n) =
(a1 + λ+ n) (a2 + λ+ n) (a3 + λ+ n)

(λ+ n+ 1)(λ+ n+ 2) (a1 + a2 + a3 − b1 − b2 + λ+ n+ 2)

= 1 + (b1 + b2 − 5)n−1 +O(n−2)

κ1(n) = −2− (b1 + b2 − 5)n−1 +O(n−2)

For λ = b1 + b2 − a1 − a2 − a3 the rn are determined once r0 is fixed, while for λ = 0, the rn depend
freely on r0 and r1. This gives 3 solutions.

By the substitution rn = r̃nn
µ where µ = −2 + max(b1, b2), this equation can be brought to the

form

r̃n+2 +

(
−2 +

d1

n
+
d2

n2
+O(

1

n3
)

)
r̃n+1 +

(
1− d1

n
− d2

n2
+O(

1

n3
)

)
r̃n = 0

where crutially d1 = 1 + |b1 − b2| is positive. This equation can be rewritten as

r̃n+2 − r̃n+1 =

(
1− d1

n
− d2

n2

)
(r̃n+1 − r̃n) +O(

max(|r̃n+1|, |r̃n|)
n3

)

All constants hidden by the O notation are effective and depend only on the parameters bi, ai. We
would like to show that r̃n = O(nε) for every ε > 0.
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