MONTE-CARLO ARITHMETIC

1. nlogn

1.1. mul(b,a) and sqr(a). Schoolbook, 2 and 3-way Toom-Cook up to 6000 bits. Then, the double precision
complex FFT takes over until its lack of cache optimizations brings it behind the 50-bit finite field FFT. The
complex FFT coefficients are now signed, which makes them extra secure(™): The dot product z1y1 +- - - + ZmYm
has the vast majority of its mass centered around zero if the z; and y; are chosen uniformly from [—2/~! 2!1]
instead of from [0,2!). The complex FFT has not failed yet, and even it if did it would have to get past several
checks modulo p which further reduce the error rate by a factor of 2754, Thus, the complex FFT is less likely to
fail in practice than the operating system is in loading the program.

1.2. inv(a). An n-bit inverse x; is extended to a 2n-bit inverse x9 via x9 = x1 + x1(1 — axy). Quadratic range:
The middle n bits of az; require n? bit multiplications, and the multiplication z1(1 — az1) requires %nQ bit

multiplications, for a total of %nQ. Newton iteration to a final precision of n bits therefore produces
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which is the same bit complexity as a mulhi, and this is a good algorithm at every precision, unless a is very short.

1.3. div(b,a). Unless a is much shorter than the target precision, Karp-Markstein is used. Quadratic range:
Producing an n/2-bit inverse z = a~! + O(27"/?) and then evaluating y = bz + O(27"/?) and b/a = y + z(b —

ay) + O(2™™) costs
%(2) 2(2) g -

The (quadratic) schoolbook approach would have the cost %nQ, which might seem better. However, these %nQ oper-
ations are mpn_submul_1, which runs at 2.0 cycles per limb. This loses slightly to gn2 operations in mpn_addmul_1,
which runs at 1.55 cycles per limb. Thus, this is a good algorithm at every precision.

1.4. rsqrt(a). An n-bit inverse x; is extended to a 2n-bit inverse xo via x9 = x1 + %xl(l —ax?).

1.5. divsqrt(b,a). Start with a n/2-bit inverse z = 1/y/a + O(27/?), evaluate y = bz + O(2~™/?), and finally
evaluate b/\/a = bz + 3y(1 — az?) + O(2™™). At the highest precision this saves only about 8% over the usual
mul (b,rsqrt(a)), but there are more gains at lower precision in fusing this common combination.

1.6. sqrtvl(a). Karp-Markstein: Start with a n/2-bit inverse z = 1/y/a +O(2~"/2), evaluate y = ax 4+ O(27"/?),
and finally evaluate \/a =y + 3z(a — y?) + O(27™).

1.7. sqrtv2(a). The usual Newton iteration: xo = (21 + +-). This formula cannot be implemented naively.
Suppose s is fixed at 0 or 1 and we have an n-bit square root via the following information:

. _ _ 2 .
Integers a1, x1, and z; with 21 < a;,2; < 2" and 2 S — (;—}L) = 59w, where either

-1<2 <1 (nearest square root, not used), or 0 < <2 (floor square root, used here).

This n-bit square root can be extended to an n + m-bit square root (for m < n, 0 < ag, x2 < 2™) via
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where r ;= 2™ 1z 4 201540 — 2. Calculating r and x5 (= ¢) is a division by 1. We have

To = (2%1)71 (2m2’1 + 2”78(12) +e — < 93—n + 93+m-—n_

Hence, if (221)~! to known precisely enough to ensure |¢| < 0.501, at most one fixed up ’ is required to obtain
/
0< -2 <9
- 2my 4o, T
in the case n —m > 64. For smaller values of n —m, at most 5 fixups are required. Since 7 is small, the calculation

of 7 from x5 can use multiplication modulo 27tm+64 or 2n+m+64 _ 1 and, of course, the inverse (22)~! need not
be updated on the last iteration.



1.8. timings. Figures 1 and 2 show the timings of various operations performed with full n bit precision in-
puts/outputs. This means that outputs are computed with a guaranteed error of less than 0.5001 ulps. The
timing are divided by the expected asymptotic complexity of the operation, and they are expressed in CPU cycles,
where, on this machine, 4 cycles is the latency of a double precision floating point addition or multiplication. For
example, In Figure 1, the orange dot above precision 2° is located at a height of approximately 0.3, indicating that
sqrtv2 operating at a precision of 256 bits runs in approximately 0.3 -256 - log 256 = 400 cycles, or, approximately
100 times as slowly as a double precision multiplication runs.
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divsqrt(b,a): b/\/a via optimized b - a~1/?
rsqrt(a): a='/? via z + z + j2(1 — az?)

sqrtvl(a): a'/? via optimized a - a1/

div(b,a): b/a via optimized b-a~!
sqrtv2(a): \/7 via optimized z < 3 (x + )
inv(a): a ! viaz + 2+ 2(1 —ax) '
mul(b, a) ba

sqr(a): a?

2. nlog’n
2.1. log(a). Up to 27 bits the region of interest is 1/v/2 < a < v/2, and a 5-stage reduction is used:

loga = —log(1 — ) log(1 — 214) log(1 — 220) log(1 — 226) log(1 2%5?) + log(1 + ),

where the s; are any integers chooses successively so that |2| < 2732, To be fast in this range, it is important that
no division is required for x. The final log is evaluated, for example, as

log(l+x)=z— (%302 - %xs + x2(;11x2 - %x?’ + 332(%3:2 - %@"3))) + O(z8).
Up to 2'6 bits, the interesting region is the same and another 5-stage reduction is used:
loga = +log(1 — Zt) £ log(1 — &) log(1 — 23 ) + log(1 — 2%) £ log(1 — &) + 2tanh™ ' (z),

where the r; are non-negative integers and where || < 2732, Unlike the previous reduction, a division is required
to compute x.
AGM iteration past 2'6 bits.

2.2. todecimal(a).



FIGURE 2. O(nlog?n) operations
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2.3. timings.



