
ALGORITHMS FOR MULTIVARIATE POLYNOMIALS

DANIEL SCHULTZ

Abstract. Algorithms for multivariate polynomials in flint are discussed. This is a separate
compile available outside of the flint2 source tree.

1. Introduction

A polynomial A ∈ R[x1, . . . , xn] is representation as a sums of terms

A = t1 + · · ·+ ta

where the terms are ordered as t1 > t2 > · · · > ta according to some term ordering. The basic
operations of addition and subtraction are then equivalent to a merge operation and run in time
proportional to the sum of the input term counts.

2. Monomial Representation

The mpoly module implements the low level packing and unpacking of exponents for multivariate
polynomials. If the variables in the polynomial are, say, x, y and z with x > y > z in the monomial
ordering, then the monomial xaybzc is represented as the array {a, b, c} from the user’s perspective.

Polynomial exponents are stored in packed format. This means that monomials are actually
stored as an array of integer ’fields’ that may be packed within a machine word or across multiple
machine words if needed. This facilitates basic operations on the monomials, and we make the
following assumptions about the correspondence between the variables’ exponents and the fields in
the packing:

(1) The monomial ordering is a total ordering, i.e. 1 is the smallest.
(2) Multiplication of monomials corresponds to field-wise addition.
(3) Monomials can be compared by comparing their packed representation possibly with an

xor mask on certain fields.
(4) The exponent of each variable is itself one of the fields.
(5) The fields are all non-negative.

For the three supported ordering ORD LEX, ORD DEGLEX, and ORD DEGREVLEX, the monomial
xaybzc is converted into fields in the following ways (the least significant field is on the left, the
most significant is on the right), and the comparison mask is shown below.

ORD_LEX: | c | b | a | (3 fields)

000 000 000

ORD_DEGLEX: | c | b | a | a+b+c | (4 fields)

000 000 000 00000

1

2 DANIEL SCHULTZ

ORD_DEGREVLEX: | a | b | c | a+b+c | (4 fields)

111 111 111 0000000

If one wanted to support, for example, a block ordering which was ORD DEGLEX in x, y and
ORD DEGREVLEX in z, w with x > y > z > w, the monomial xaybzcwd would need to be stored as

| c | d | c+d | b | a | a+b | (6 fields)

111 111 00000 000 000 00000

No such interface is currently implemented.
There is no limit to the size of the fields. The fields themselves are packed to a uniform bit

width, usually denoted by bits in the functions. This bit count should contain an extra sign bit
used for overflow detection. Thus, if the maximum field is 15, then the fields only fit into a packing
with bits >= 5. The total number of machine words taken by an exponent packed into fields is
usually denoted by N in the code.

If bits <= FLINT BITS then precisely a maximum of floor(FLINT BITS/bits) number of fields
may be packed into a single word. Within a word, the packing is from low to high, and unused
fields (as well as unused bits) at the top of the word are zero.

3. Multiplication

3.1. Dense multiplication in Z[x1, . . . , xn] or Zp[x1, . . . , xn].
Given A(x1, . . . , xn), B(x1, . . . , xn) ∈ R[x1, . . . , xn], set ri = 1 + degxi(a) + degxi(b). The Kro-

necker substitution

x1 → x, x2 → xr1 , x3 → xr1r2 , . . . , xn → xr1···rn−1

gives two univariate polynomials to multiply in Z[x] or Zp[x]. This Kronecker substitution is
chosen so that it can be reversed to find A · B ∈ R[x1, . . . , xn] from the univariate product. The
flint functions mpoly mul {dense|array} implement such techniques. The dense functions use
the ordinary polynomial multiplication functions while the array functions use a multiply and
accumulate technique that might be better for semi-sparse polynomials.

3.2. Sparse multiplication in Z[x1, . . . , xn] or Zp[x1, . . . , xn].
Given A = t1 + · · ·+ ta, B = s1 + · · ·+ sb,∈ R[x1, . . . , xn], we need to calculate all products tisj ,

sort them, and combine like terms. This is done using a heap in the functions mpoly mul johnson

as in [2]. The essential idea is to read off the product terms in order from a heap. The heap never
needs to become too large if one uses the relations

tisj > ti+1sj , tisj > tisj+1.

4. Division

The techniques used for multiplication (Kronecker substitutions in the dense case and heaps in
the sparse case) apply to division as well.

5. Powering

Implements a corrected version of an algorithm called FPS in [3]. The basic idea is to map the
problem to R[x] via a Kronecker substitution and use a recursion for the coefficients of fk derived
from

f(fk)′ = kf ′(fk).

ALGORITHMS FOR MULTIVARIATE POLYNOMIALS 3

Since solving for the coefficients of fk involves division, this requires some modification for R = Zp.

6. Interpolation

All of the interpolation methods for f(x1, . . . , xn) ∈ R[x1, . . . , xn] require strict degree bounds
ri with degxi(f) < ri.

6.1. Dense Newton Interpolation. Straightforward, variable-by-variable, recursive, dense in-
terpolation. Number of probes to f is

∏
i ri. There is only one problem with this approach.

• insufficient evaluation points

6.2. Sparse Zippel Interpolation. Similar to Newton interpolation, but we use the assumption
that monomials don’t disappear under evaluation. For example, suppose rx, ry, rz are the strict
degree bounds. We first find f(x, 1, 1) using dense interpolation with rx values of x, say x1, . . . , xrx ,.
If

f(x, 1, 1) = x5 + 2x2 + 1,

we make the assumption that

f(x, y, 1) = a1(y)x5 + a2(y)x2 + a3(y),

and proceed to interpolate the ai(y) using dense univariate interpolation in y. We need ry values
of y, say y1, . . . , yry . For each of these values y = yi we can find the coefficients (?) in

f(x, yi, 1) = (?)x5 + (?)x2 + (?)

by plugging in three random values of x and solving the linear system. To find f(x, y, 1) at this
point the number of probes to f we have used is rx + 3ry, which is probably fewer than rxry.

Now suppose we obtain

f(x, y, 1) = y2x5 + x2 + y7x2 + y3.

Make the assumption

f(x, y, z) = b1(z)y
2x5 + b2(z)x

2 + b3(z)y
7x2 + b4(z)y

3,

and interpolate the bi(z) using dense univariate interpolation in z. We need rz values of z, say
z1, . . . , zrz . For each of these values z = zi we can find the coefficients (?) in

f(x, y, z) = (?)y2x5 + (?)x2 + (?)y7x2 + (?)y3

by plugging in four random pairs of values of (x, y) and solving the linear system. To find f(x, y, z)
at this point the number of probes to f we have used is rx + 3ry + 4rz, which is probably fewer
than rxryrz.

This approach has an additional problems.

• insufficient evaluation points
• inconsistent/underdetermined linear equations
• associated linear algebra costs

4 DANIEL SCHULTZ

6.3. Sparse Interpolation with the Berlekamp-Massey Algorithm. Given the strict degree
bounds ri, in order to interpolate f(x1, . . . , xn) it suffices to interpolate f(ξ, ξr1 , ξr1r2 , . . . , ξr1···rn−1),
which is a univarate with degree bound

∏
i ri. If t is the number of terms of f , then we can

summarize the probe counts of the three methods.

(1) dense:
∏
i ri

(2) zippel: approximately t ·
∑

i ri.
(3) bma: 2t.

This approach has problems too.

• insufficient evaluation points
• costs of the associated linear algebra and discrete logarithms.

Since the presentation in [7] is overly complicated and does not deal with the half gcd, it seems
reasonable to review the Berlekamp-Massey Algorithm here. Given a formal power series

a1
x

+
a2
x2

+
a3
x3

+ · · · , ai ∈ F

vanishing at x = ∞ and the fact that this power series represents a rational function, we are
interested in computing this rational function. The following theorem says that we can use the
extended euclidean algorithm and stop when the first remainder of degree < n

2 is obtained.

Theorem 6.1. Suppose that
a1
x

+
a2
x2

+
a3
x3

+ · · · = − ū
v̄

for some ū, v̄ ∈ F[x] with deg(ū) < deg(v̄) ≤ n
2 . Suppose further that

uxn + v(a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an) = r (6.1)

for some u, v, r ∈ F[x] with deg(u) < deg(v) ≤ n
2 and deg(r) < n

2 and deg(r) < deg(v). Then,

ū

v̄
=
u

v
.

Proof. Dividing both sides of (6.1) by vxn shows that

ū

v̄
=
u

v
+O

(
1

xn+1

)
,

which, on account of the degree bounds deg(v̄), deg(v) ≤ n
2 , proves the equality. �

This reconstruction may be applied to reconstruct an f(ξ) = c1ξ
e1 + · · ·+ ctξ

et ∈ F[ξ] from the
sequence of evaluation points

ai = f(αs+i−1), α 6= 0, s ∈ Z,

for in this case we have
a1
x

+
a2
x2

+
a3
x3

+ · · · = c1α
e1s

x− αe1
+ · · ·+ ctα

ets

x− αet
.

If this rational function is known and the ei can be found, then f is known as well.
The main problem with this approach is that the term bound t is not known in advance. The

approach we take is to calculate the v in (6.1) for some n points a1, . . . , an. Then, we add another
m points to form the sequence a1, . . . , an+m and calculate the corresponding v′. If v = v′, then it is
likely that v is the correct denominator. The extent to which previous computations may be reused

ALGORITHMS FOR MULTIVARIATE POLYNOMIALS 5

is addressed in Theorem 6.3. We follow [8] for the presentation of the half gcd. An elementary
matrix is one of the form (0 1

1 q) for deg(q) > 0 and a regular matrix is a product of zero or more

elementary matrices. The notation U
M−→ V shall mean that M is a regular matrix and U = MV .

If deg(A) > deg(B) then hgcd(A,B) is defined (see [8]) as the (unique) regular matrix M such
that (

A
B

)
M−→
(
C ′

D′

)
,

deg(C ′) ≥ deg(A)

2
> deg(D′).

Theorem 6.2. Suppose that (
A0

B0

)
M−→
(
A′0
B′0

)
deg(A′0) > deg(B′0)

deg(A0) ≤ 2 deg(A′0)

Then, for any A1, B1 with deg(A1), deg(B1) < m,(
A0x

m +A1

B0x
m +B1

)
M−→
(
A′

B′

)
deg(A′) = m+ deg(A′0)

deg(B′) ≤ m+ max(deg(B′0),deg(A′0)− 1)

deg(B′) ≤ m+ max(deg(B′0),
deg(A0)

2
− 1)

for some A′, B′.

Proof. This is a trivial rearrangement of Lemma 1 in [8]. �

Theorem 6.3. Suppose deg(sn) < n, deg(sm) < m and(
xn

sn

)
M−→
(
r0
r1

)
deg(r0) ≥

n

2
> deg(r1)

Then, a regular matrix M ′ (and thus r′0, r
′
1) such that(

xn+m

snx
m + sm

)
M ′−→

(
r′0
r′1

)
deg(r′0) ≥

n+m

2
> deg(r′1)

may be calculated as follows. Define A′, B′ by(
xn+m

snx
m + sm

)
M−→
(
A′

B′

)

6 DANIEL SCHULTZ

It will be the case that deg(A′) ≥ n+m
2 . If n+m

2 > deg(B′), return with M ′ = M . Otherwise set
C = B′, D = rem(A′, B′) and q = quo(A′, B′). Define k := n + m − deg(C). It will be the case
that 0 < k ≤ deg(C). Return with

M ′ = M ·
(

0 1
1 q

)
· hgcd

(
quo(C, xk)
quo(D,xk)

)
Proof. By Theorem 6.2, deg(A′) = m + deg(r0) ≥ m + n

2 ≥
n+m
2 . Now suppose n+m

2 ≤ deg(B′),
from which the assertion k ≤ deg(C) follows automatically. By Theorem 6.2, deg(B′) ≤ m +
max(deg(r1), deg(r0)− 1) < m+ n. Thus, the assertion 0 < k is proved. Finally, suppose(

C0 := quo(C, xk)
D0 := quo(D,xk)

)
H−→
(
C ′0
D′0

)
,

deg(C ′0) ≥
deg(C0)

2
> deg(D′0).

If C ′, D′ are defined by (
C
D

)
H−→
(
C ′

D′

)
,

it suffices to prove that deg(C ′) ≥ n+m
2 > deg(D′). By Theorem 6.2,

deg(C ′) = k + deg(C ′0)

≥ k +
deg(C0)

2

= k +
deg(C)− k

2

=
n+m

2
.

Also by Theorem 6.2,

deg(D′) ≤ k + max(deg(D′0),
deg(C0)

2
− 1)

< k + max(
deg(C0)

2
,
deg(C0)

2
)

=
n+m

2
.

�

7. Greatest Common Divisor

7.1. Dense GCD in Zp[x1, . . . , xn]. Brown’s algorithm [1] is used here. This comes in two
versions - a small prime version and a large prime version. These refer not to the size of the p’s
involved, but rather to the field from which evaluation points are chosen: it can either be Fp or an
extension of Fp. The small prime version interpolates in each variable by choosing evaluation points
from Fp. If this fails, then the large prime method uses interpolation in Fp/(f(xn))[x1, . . . , xn−1],
i.e. Fq[x1, . . . , xn−1], for sufficiently many irreducible f(x) ∈ Zp[x]. No explicit divisibility checks
need to be performed because the cofactors are reconstructed along with the GCD.

ALGORITHMS FOR MULTIVARIATE POLYNOMIALS 7

7.2. Dense GCD in Z[x1, . . . , xn]. We simply reconstruct the GCD from its image in Zp[x1, . . . , xn]
for sufficiently many p. Only large p’s are used, and dense GCD’s in Zp[x1, . . . , xn] only use the
small prime version. Each image GCD in Zp is correct and Brown’s coefficient bounds [1] are used
instead of a divisibility check. Some pseudocode is Section 10.

7.3. Sparse GCD in R[x1, . . . , xn]. Assuming that we have a gcd algorithm for R[x1, . . . , xm],
we can view the inputs as elements of R[x1, . . . , xm][xm+1, . . . , xn] and use interpolation to extend
this algorithm from m variables to n variables. Brown’s algorithm corresponds to taking m = n−1,
using univariate interpolation for the extension of n − 1 variables to n variables, and recursively
solving the n − 1 variable gcd problem with the Euclidean algorithm as the base case. Taking
m = 1 gives Zippel’s approach [4]. If the inputs are made primitive with respect to x1, . . . , xm by
factoring out polynomials in R[xm+1, . . . , xn], the gcd of the leading coefficients of the input with
respect to x1, . . . , xm may be imposed as the leading coefficient of the interpolated gcd. Finally, if
the primitive part with respect to x1, . . . , xm of this interpolated gcd divides both inputs, it must
be the true gcd.

Of note here is an algorithm stated slightly incorrectly in [6] and [5]; The basic idea is to recon-
struct the correct leading term of the gcd ∈ R[x1, . . . , xm] using some linear algebra directly instead
of constructing some known multiple and then removing content. This is in fmpz mpolyl gcd zippel

and a rough overview is:
fmpz mpolyl gcdm zippel(A,B ∈ Zp[x1, . . . , xn][X], n ≥ 1):

The GCD is assumed to have no content w.r.t. X (content in Z[x1, . . . , xn])
Pick a prime p and call nmod polyl gcdp zippel to get an probable image of G mod p
Assume that the true gcd G over Z has the same monomials as this image mod p.
Pick more primes p and call nmod mpolyl gcds zippel to get more images of G mod p.
Combine the images via chinese remaindering and test divisibility.

The “p” versions produce a correct gcd when the inputs have no content in Fp[x1, . . . , xn].
nmod mpolyl gcdp zippel(A,B ∈ Fp[x1, . . . , xn][X], n ≥ 1):

If the GCD has content w.r.t. X,x1, . . . , x1 (content in Fp[xn]), fail.
Pick an evaluation point xn → α for α ∈ Fp.
(1) Call nmod mpolyl gcdp zippel recursively on the evaluated inputs in Fp[x1, . . . , xn−1][X].
Record the form f of the GCD obtained for step (2) below.
Pick severial evaluation points xn → α for α ∈ Fq.
(2) Call [fq]nmod mpoly gcds zippel on the evaluated inputs in Fq[x1, . . . , xn−1][X].
Combine the answer from (1) and the answers from (2) via interpolation in xn.
Check divisibility on the proposed interpolated GCD.

The “s” versions are the heart of Zippel’s sparse interpolation.
nmod mpolyl gcds zippel(A,B ∈ Fq[x1, . . . , xn][X], assumed monomial form f of gcd): Via evaluations of the form (x1, . . . , xn)→ (α1, . . . , αn) ∈ Fnp ,

and GCD computations in Fp[X], and linear algebra, try to compute the coefficients
of the assumed form f to match the GCD of the inputs (up to scalar multiples in Fp).

7.4. PRS. The PRS algorithm works over any gcd domain R. It starts with a primitive input
with respect to some main variable and calculates a pseudo gcd with a pseudo remainder sequence.
Content is removed from the pseudo gcd to produce the true gcd by a recursive call. The final

8 DANIEL SCHULTZ

content can be computed without expensive recursive calls to gcd in the case when we know the
leading or trailing coefficient in the main variable must be a monomial in the remaining variables.

This algorithm has been discarded because it is so bad but may be reintroduced for low degrees.

7.5. Hensel Lifting. The gcd can also be calculated using Hensel lifting [10]. The gcd of the
resulting univariates when all variables but one are substituted away gives two factorizations which
can be lifted to obtain the multivariate gcd.

8. Factorization

8.1. Squarefree Factorization in K[x1, . . . , xn]. By taking derivatives and greatest common
divisors, we may assume that the input polynomial is squarefree and primitive with respect to each
variable. Thus in characteristic zero the input polynomial f ∈ K[x1, . . . , xn] may be assumed to
satisfy

∀i fxi 6= 0 and gcd(f, fxi) = 1.

Over a finite field (K = Fq) of characteristic p, we have the slightly weaker conditions

fx1 6= 0 and gcd(f, fx1) = 1

∀i>1 fxi = 0 or gcd(f, fxi) = 1
(8.1)

While we could apply the factorization algorithms directly to this f with x1 as the main variable,
it is possible to a bit better when some of the other derivatives vanish.

Theorem 8.1. With the assumption 8.1 on f and prime powers pe2 , . . . , pen and a deflated poly-
nomial g with

g(x1, x
pe2
2 , . . . , xp

en

n) = f(x1, x2, . . . , xn),

the factorization of f is the inflated factorization of g.

The proof follows by induction from the following lemma: the polynomials g(x1, x2, x3, . . . , xn)
and g(x1, x

p
2, x3, . . . , xn) have the same factorization (up to inflation x2 → xp2).

Lemma 8.2. If p = char(K) > 0 and f(x, y) ∈ K[x, y] \ (K[x] ∪K[y]) is irreducible and f(xp, y)
is squarefree, then f(xp, y) is irreducible.

Proof. Suppose that f(xp, y) = g(x, y)h(x, y) for g, h 6∈ K. Since f(xp, y) is squarefree, g and h are
squarefree, and there are s, t ∈ K(y)[x] with 1 = sg+th. By differentiating f(xp, y) = g(x, y)h(x, y),
we obtain 0 = hgx+ghx, which when combined with 1 = sg+th gives h(thx−sgx) = hx. This implies
that hx = 0 and in turn that gx = 0, which implies that f(x, y) is reducible, a contradiction. �

8.2. Factorization in R[x].

8.2.1. Quadratic over characteristic 6= 2. The primitive polynomial ax2 + bx+ c factors if and only
if b2−4ac is a square in R, in which case the factors are the primitive parts of 2ax+ b±

√
b2 − 4ac.

ALGORITHMS FOR MULTIVARIATE POLYNOMIALS 9

8.2.2. Quadratic in R[X] for R = F2k [x1, . . . , xn]. We wish to determine if X2 + AX + B has a
root in R. Since X0 + A is a root if X0 is, at least one of the two roots does not have lt(A) as a
term. (It very well may be the case that both roots have a monomial matching lm(A), but then
both corresponding coefficients must be different from the leading coffcient of A). Therefore, we
make the important assumption that we are searching for a root X0 with lt(A) not a term of X0.
Let m denote the leading term of X0. By taking leading terms in X2

0 +AX0 +B and applying the
assumption, we have

lt(m2 + lt(A)m) = lt(B), and m 6= lt(A).

For any specific given terms lt(A), lt(B), this equation is easy to solve for m or to determine that
there is no solution.

lm(m) > lm(A) : m =
√

lt(B)

lm(m) = lm(A) : m = ζ/ lc(A)
√

lm(B), ζ2 + ζ = lc(B)/ lc(A)2

lm(m) < lm(A) : m = lt(B)/ lt(A)

Once m is found, the equation satisfied by X0 −m has the same A and a new B with a smaller
leading monomial. In this way the solution may be written down in order, and this process is a
simplification of Sections 4 and 5 in [14], which does not present a sparse algorithm due to the
many (possibly disastrous) divisions performed. The quadratic ζ2 + ζ + c ∈ F2k has a root if and

only if Tr(c) = 0, in which case c =
∑k−1

i=1 c
2i
∑i−1

j=0 u
2j is a root where u is any element of F2k with

Tr(u) = 1. If F2k = F2[θ]/P (θ), then u = 1/(θP ′(θ)) will do.

8.2.3. Cubic over Z. To factor a cubic over Z, we first find the roots over the more friendly ring
Z2 and then test these roots over Z. Since it is easy to bound the roots over Z, the roots over Z2

only need to be calculated to some finite precision p, that is, to order O(2p).
Factor x3 + 2αax+ 2βb over Z2 where α, β ≥ 0 and a, b are odd integers:

(1) 2β = 3α: irreducible, as replacing x← 2β/3y has no roots modulo 2 for y.
(2) 2β < 3α:

(a) 3 - β: irreducible as all roots have valuation β/3.

(b) 3 | β: Replacing x ← 2β/3y gives y3 + 2α−2β/3ay + b = 0, which factors as (y2 + y +
1)(y+1) = 0 modulo 2. Hence there is a unique root in Z2, and this root has valuation
β/3.

(3) 2β > 3α: Replacing x ← 2β−αy gives 22β−3αy3 + ay + b = 0, which has y = 1 mod 2 as a
root. This gives a factorization

22β−3αy3 + ay + b = (y + r)(22β−3αy2 − 22β−3αry + s)

for some odd r, s ∈ Z2. This becomes

(x+ 2β−αr)(x2 − 2β−αrx+ 2αs) = 0

(a) 2 - α: quadratic is irreducible and −2β−αr is the only root.
(b) 2 | α: assuming the square roots exist, the roots of the quadratic, which have valuation

α/2, are

2β−α−1r ± 2α/2
√

22β−3α−2r2 − s

10 DANIEL SCHULTZ

If r and s are calculated to some absolute precision O(2p), then this expression is also
known to absolute precision O(2p) except when α = 0 and β = 1, in which case the
square root loses more than one bit of precision.

8.3. Factorization in K[x, y]. For K = Q, an irreducible bivariate polynomial f(x, y) remains
irreducible modulo y = y0 for a generic y0 ∈ Q. Hence, all of the difficult recombination may be
pushed to the univariate factorization. When K = Fq the recombination in [9] is necessary.

8.3.1. Bivariate factorization over Q. We begin with f(x, y) satisfying

(1) f(x, y) ∈ Z[x, y] and f(x, 0) ∈ Z[x] are squarefree so that we can lift.
(2) f(x, y) is primitive with respect to x (i.e. contx(f) ∈ Z[y] is 1) so that any factor is also

primitive with respect to x.
(3) degx(f(x, y)) = degx(f(x, 0)) (i.e. lcx(f) does not vanish at y = 0) so that we can make f

monic.

Let

f̃(x, y) = f(x, y)/ lcx(f(x, y)) ∈ Q[[y]][x]

be the monic version of f computed to precision O(y1+degy f). We can factor f̃(x, 0) ∈ Q[x] by a
univariate algorithm and lift the factors to produce an irreducible factorization in Q[[y]][x] as

f̃(x, y) =
l∏

i=1

f̃i(x, y).

The f̃i(x, y) are also monic and need to be computed to precision O(y1+degy f). For each subset S
of {1, . . . , l}, we then have the candidate true factor

ppartx

(
lcx(f)

∏
i∈S

f̃i(x, y)

)
,

where, before taking the primitive part, the elements of Q[[y]][x] must be mapped to Q[y][x] via

remainder upon division by y1+degy f . Since we are only interested in candidate factors over Z, Q
may be replaced by Z/pkZ for appropriate pk (in particular p - lcx(f(x, 0))). The coefficients in
Z/pkZ must then be mapped to Z via the symmetric remainder before taking the primitive part.

8.3.2. Bivariate Factorization over Fq. We begin with f(x, y) ∈ Fq[x, y] and an irreducible α(y) ∈
Fq[y] (with Fqk := Fq[y]/α(y)) such that

(1) α(y) does not divide lcx f(x, y) so that we can make f monic.
(2) f(x, y) mod α(y) ∈ Fqk [x] is squarefree so that we can lift.
(3) f(x, y) is primitive with respect to x.

The irreducible factorization of f(x, y) mod α(y) can be lifted to a monic factorization in Fq[[α(y)]][x].
With the help of some linear algebra over Fp these factors can be recombined into true factors.

ALGORITHMS FOR MULTIVARIATE POLYNOMIALS 11

8.4. Factorization in R[x1, . . . , xn][X]. Factoring of a multivariate squarefree primitive polyno-
mial f over R[x1, ..., xn][X] (satisfying the assumptions of Section 8.1 works by reducing f modulo
the ideal

〈x1 = α1, x2 = α2, . . . , xn = αn〉
for some αi ∈ R, factoring the resulting univariate into, say, r, factors, and then lifting the
univariate factorization to a multivariate factorization. The evaluation points must be good in
the sense that f(α1, . . . , αn, X) is squarefree and has the same degree as f(x1, . . . , xn, X) in X.
This lifting process does not change the leading coefficients in X, hence it is necessary that the
leading coefficients be “correct” before the lifting. In the most general setting, we can determine
di ∈ R[x1, ..., xn], such that it is known that di divides the leading coefficient of the i-th lifted
factor. Then, before lifting, we compute m = lcX(f)/(d1 · · · dr), impose a leading coefficient of dim
on the i-th factor, and multiply f by mr−1. If the lifting succeeds, then the actual factors can be
obtained by taking principle parts. Doing no work to precompute leading coefficients corresponds
to taking di = 1, which can obviously lead to large swells.

8.4.1. Wang’s leading coefficient computation. Wang [11] has a good solution to the leading coef-
ficient problem over Z. The idea can be illustrated by a simple example.

(2x31x2 + 2x31x2)X
2 + · · · = (2x1(x1 + x2)X + x1)(x1x2X + 6)

First the irreducible factorization of the leading coefficient is computed

(2x21x2 + 2x21x2) = 2x21x2(x1 + x2)

Next, an evaluation point xi = αi such that there exists primes pi such that

p3 | α1 + α2, p3 - α2, p3 - α1,

p2 | α2, p2 - α1,

p1 | α1

Lets take α1 = 10, α2 = 14 and p1 = 5, p2 = 7, p3 = 3. The univariate factorization comes out as

20(48X + 1)(70X + 3)

What is of interest here is the leading coefficients of the primitive factors over Z. From p3 = 3 we
can correctly distribute x1 + x2 to the first multivariate factor. From p2 = 7 we can distribute x22
to both factors, and from p1 = 5, we can distribute x1 to the second factor.

When R is a finite field, there is no useful notion of “prime”. Furthermore, the probability
that an irreducible univariate factorization can be lifted to a multivariate factorization is low and
sometimes zero. Hence this does not work as stated. One may replace R by R[Y] for an auxiliary
indeterminate Y and consider polynomial substitutions of the form

x1 = α1 + β1Y + γ1Y
2 + · · ·

x2 = α2 + β2Y + γ2Y
2 + · · ·

· · ·
xn = αn + βnY + γnY

2 + · · · .

The base case factorization is now not R[X] but R[Y][X]. The points α1, ..., αn still need to be
good because the lifting will ultimately begin with univariates. However, the univariate factors

12 DANIEL SCHULTZ

come not from an irreducible univariate factorization, but from the Y = 0 image of a bivariate
factorization, which should greatly increases the changes of success in the lifting.

8.4.2. Kaltofen’s leading coefficient computation. In this recursive approach [15], after substituting
away all but two of the variables, the bivariate polynomial is factored and the leading coefficients
of the bivariate factors can be lifted against the leading cofficient of the original polynomial. Since
only squarefree lifting is implemented, it is actually the squarefree parts of everything that are
lifted.

8.4.3. Dense Hensel lifting. Some pseudocode is Section 10. Of note here is that when lifting over
Z, we do not lift over Z/pkZ as Wang [11] advises but do the lifting directly over Z.

8.4.4. Sparse Hensel lifting.

9. Absolute Factorization

The goal of absolute factorization is to take an irreducible f ∈ R[x1, . . . , xn] and either determine
that f is absolutely irreducible or provide a factorization

f = gh, g, h ∈ R′[x1, . . . , xn]

where g is absolutely irreducible. h may or may not be absolutely irreducible: it is simply the
product of the rest.

9.1. Absolute Irreduciblity Testing. Here we follow Gao [12]. For a multivariate polynomial
f =

∑
i∈Zn cixxx

i, the Newton polygon N(f) is defined to be the convex hull of {i ∈ Zn|ci 6= 0} in
Rn. Since N(fg) = N(f) +N(g) where + denotes the Minkowski sum, if N(f) is indecomposable,
then f is absolutely irreducible. Although indecomposability testing is hard, Gao gives a reasonable
algorithm in two dimensions [13], that is, for bivariate polynomials, and projects higher dimensional
polytopes onto a two-dimensional “shadow” to test them for indecomposability.

If f ∈ K[xxx] happens to be irreducible over K but not over the algebraic closure K, then N(f)
will never be sufficient to prove the irreducibility over K. In the case that we are able to prove that
f is irreducible over K using other methods, N(f) can still be used to obtain some information
on the degree of an extension of K needed to factor f absolutely. An absolute factorization of an
irreducible f(xxx) ∈ K[xxx] looks like

f(xxx) = resultantα(u(α), g(α,xxx))

for some irreducible u(α) ∈ K[α] of degree, say, m. Since all m of the g(α,xxx) have the same Newton
polygon, it follows that N(f) = m · N(g), and thus m divides the coordinates of every vertex in
N(f). This can severely limit the possibilities for the extension degree required for an absolute
factorization.

9.2. Bivariate Absolute Factorization over Q. The idea here is that an absolutely irreducible
g(x, y) ∈ Q[x, y] remains absolutely irreducible in Fp[x, y] for generic p.

Assume that f(x, y) ∈ Q[y][x] is irreducible. Pick a good α ∈ Q and a good rational prime
p. The definition of “good” is that none of the following steps or assumptions fail. Determine an
Fq = Fp? such that f(x, α) splits completely into distinct linear irreducibles:

f(x, α)

lcx(f(x, y))|y=α
=
∏
i

x− ri in Fq[x].

ALGORITHMS FOR MULTIVARIATE POLYNOMIALS 13

Lift this to power series:

f(x, y)

lcx(f(x, y))
=
∏
i

x− ri(y) in Fq[[y − α]][x].

Do some linear algebra to recombine the factors into a real factorization:

f(x, y) =
∏
j

gj(x, y) in Fq[y][x].

The gi(x, y) ∈ Fq[y][x] are absolutely irreducible. It might be possible to reduce the size of q at
this point.

We then try to lift this to a factorization in Qq[y][x]:

f(x, y) =
∏
j

g̃j(x, y) in Qq[y][x].

In order to attemp this lift the lcx(g̃j(x, y)) ∈ Qq[y] must be correct before starting. Assume
lcx(f(x, y)) is monic in y, and that its squarefree part remains squarefree modulo p. Then, the
squarefree factors of the lcx g̃j(x, y) can be lifted and we can recover the monic lcx(g̃j(x, y)) ∈ Qq[y].

Finally, we map g̃1(x, y) to some number field K[x, y] (so that the other g̃j(x, y) are its conju-
gates) and test divisibility g1|f .

9.3. Bivariate Absolute Factorization over Fq.

9.4. Multivariate Absolute Factorization. For absolutely factoring an irreducible inR[x1, . . . , xn][X],
the plan is to substitute good auxiliary polynomials

x1 = α1 + β1Y + γ1Y
2 + · · ·

x2 = α2 + β2Y + γ2Y
2 + · · ·

· · ·
xn = αn + βnY + γnY

2 + · · · ,
and absolutely factor the resulting bivariate in R[X,Y], and then lift the Y = 0 images of the
two factors back to a multivariate factorization. This would require the fact that an absolutely
irreducible multivariate remains an absolutely irreducible bivariate under a generic substitution of
this form.

References

[1] W. S. Brown. On Euclid’s Algorithm and theComputation of Polynomial Greatest Common Divisors. J. ACM
18 (1971), 478-504.

[2] Johnson, S.C., 1974. Sparse polynomial arithmetic. ACM SIGSAM Bulletin 8 (3), pp. 63–71.
[3] Monagan M., Pearce R.: Sparse polynomial powering using heaps. “Computer Algebra in Scientific Computing”,

Springer, 2012, s.236-247.
[4] Zippel, Richard, Probabilistic algorithms for sparse polynomials. Lecture Notes in Computer Science. 72. pp.

216–226, 1979
[5] J. de Kleine, M. Monagan and A. Wittkopf, Algorithms for the non-monic case of the sparse modular GCD

algorithm. Proceedings of ISSAC ’05, ACM Press, pp. 124–131, 2005.
[6] Yang, Suling. Computing the Greatest Common Divisor of Multivariate Polynomials over Finite Fields.

http://www.cecm.sfu.ca/CAG/theses/suling.pdf
[7] The Berlekamp-Massey Algorithm revisited, N. B. Atti, G. M. Diaz–Toca, H. Lombardi, 9 March 2006

14 DANIEL SCHULTZ

[8] A Unified Approach to HGCD Algorithms for polynomials and integers by Klaus Thull , Chee K. Yap
[9] Factoring polynomials over global fields Belabas, Karim; van Hoeij, Mark; Klüners, Jürgen; Steel, Allan Journal

de théorie des nombres de Bordeaux, Volume 21 (2009) no. 1, p. 15-39
[10] P. S. Wang, The EEZ-GCD Algorithm, ACM SIGSAM Bulletin 14, pp. 50–60, 1980
[11] P. S. Wang, An improved multivariate polynomial factoring algorithm. Mathematics of Computation 32, no.

144, 1215–1231, 1978
[12] S. Gao, Absolute irreducibility of polynomials via Newton polytopes, Journal of Algebra 237 (2001), 501–520.
[13] S. Gao and A.G.B. Lauder, Decomposition of polytopes and polynomials, Discrete and Computational Geometry

26 (2001), 89–104.
[14] Jørgen Cherly, Luis Gallardo, Leonid Vaserstein and Ethel Wheland: Solving Quadratic Equations over Poly-

nomial Rings of Characteristic Two. Publicacions Matemàtiques, Vol. 42, No. 1 (1998), pp. 131-142
[15] E. Kaltofen. Sparse Hensel lifting. In EUROCAL 85 European Conf. Comput. Algebra Proc. Vol. 2, pages 4–17,

1985

ALGORITHMS FOR MULTIVARIATE POLYNOMIALS 15

16 DANIEL SCHULTZ

10. Pseudocode

10.1. gcd. For the dense gcd over finite fields, if one runs out of primes of the form x−α, instead
of failing it is possible to use any irreducible polynomial in place of x−α in Algorithm 1, and this
would constitute the large prime version of the algorithm.

Algorithm 1: brownp dense gcd over finite field

Input:
(1) A,B ∈ Fq[x][x1, . . . , xn] neither is zero

Output:

(1) monic G = gcd(A,B), Ā = A/G, B̄ = B/G

1 if n = 0 then return using univariate arithmetic

2 set cA = contx1,...,xn(A) and cB = contx1,...,xn(B) ∈ Fp[x]

3 set A = A/cA and B = B/cB // content cA, cB, . . . is always monic

4 set cG = gcd(cA, cB), cĀ = cA/cG and cB̄ = cB/cG

5 set γ = gcd(lcx1,...,xn(A), lcx1,...,xn(B)) ∈ Fq[x]

6 set bound = 1 + degx γ + max(degx(A),degx(B)), and set m = 1 ∈ Fp[x]

7 pick a prime: // primes are (x− α)

8 choose a new α ∈ Fq else return FAIL

9 set γ∗ = γmod (x− α)

10 set A∗ = Amod(x− α) and B∗ = Bmod(x− α) ∈ Fq[xn][x1, . . . , xn−1]

11 if γ∗ = 0 then goto pick a prime

12 set (G∗, Ā∗, B̄∗) = brownp(A∗, B∗) or goto pick a prime if the call failed

13 if G∗ = 1 then set G = 1, A = Ā, B = B̄, goto put content

14 if degx(m) > 0 then
15 if lmx1,...,xn(G∗) < lmx1,...,xn(G) then set m = 1

16 if lmx1,...,xn(G∗) > lmx1,...,xn(G) then goto pick a prime

17 end

18 set Ā = crt(Āmodm, Ā∗mod (x− α)) and B̄ = crt(B̄modm, B̄∗mod (x− α))

19 if Ā did not change and, with T = Ā/ contx1,...,xn(Ā), T | A and A/T | B then
20 set G = A/T , Ā = T and B̄ = B/G, goto fix lcs

21 end

22 set G = crt(Gmodm, γ∗ ·G∗mod (x− α)) and m = m · (x− α)

23 if G did not change and, with T = G/ contx1,...,xn(G), T | A and T | B then
24 set G = T , Ā = Ā/G and B̄ = B/G, goto fix lcs

25 end

26 if degx(m) < bound then goto pick a prime

27 if degx γ + degxA = degxG+ degx Ā and degx γ + degxB = degxG+ degx B̄ then goto

success

28 set m = 1, goto pick a prime

29 success:

30 set G = G/ contx1,...,xn(G), A = A/ lcx1,...,xn(G) and B = B/ lcx1,...,xn(G)

31 put content:

32 set G = G · cG, Ā = Ā · cĀ and B̄ = B̄ · cB̄
33 return (G, Ā, B̄)

34 fix lcs:

35 with δ = lcx,x1,...,xn(G), set G = δ−1G, A = δA and B = δB, goto put content

ALGORITHMS FOR MULTIVARIATE POLYNOMIALS 17

On lines 18 and 22, the inputs G, Ā, B̄ are undefined only when m = 1, in which case the crt
ignores them anyways. There should also be a check analogous to line 19 for the stabilization of
B̄. This was omitted simply due to space constraints. Finally, the stability checks in lines 19 and
23 (and the missing one for B̄) are completely optional and may be executed or skipped on every
iteration at the user’s discretion.

Similarly to the previous algorithm, divisibility checks could be performed over the integers as
well.
Algorithm 2: brownm dense gcd over integers

Input: n ≥ 1
(1) A,B ∈ Z[x1, . . . , xn] neither is zero

Output:

(1) unit normal G = gcd(A,B), Ā = A/G, B̄ = B/G

1 set cA = contx1,...,xn(A) and cB = contx1,...,xn(B) ∈ Z
2 set A = A/cA and B = B/cB // content cA, cB, . . . is always positive

3 set cG = gcd(cA, cB), cĀ = cA/cG and cB̄ = cB/cG

4 set γ = gcd(lcx1,...,xn(A), lcx1,...,xn(B)) ∈ Z[x]

5 set bound = 2 · γ ·max(|A|∞, |B|∞), and set m = 1 ∈ Z
6 pick a prime: // primes are numbers

7 choose a new prime p ∈ Z else return FAIL

8 set γ∗ = γmod p

9 set A∗ = Amod p and B∗ = Bmod p ∈ Fp[xn][x1, . . . , xn−1]

10 if γ∗ = 0 then goto pick a prime

11 set (G∗, Ā∗, B̄∗) = brownp(A∗, B∗) or goto pick a prime if the call failed

12 if G∗ = 1 then set G = 1, A = Ā, B = B̄, goto put content

13 if m > 1 then
14 if lmx1,...,xn(G∗) < lmx1,...,xn(G) then set m = 1

15 if lmx1,...,xn(G∗) > lmx1,...,xn(G) then goto pick a prime

16 end

17 set Ā = crt(Āmodm, Ā∗mod p) and B̄ = crt(B̄modm, B̄∗mod p)

18 set G = crt(Gmodm, γ∗ ·G∗mod p) and m = m · p
19 if m < bound then goto pick a prime

20 set hA = min(|G|1 · |Ā|∞, |G|∞ · |Ā|1) // upper bound on |G · Ā|∞
21 set hB = min(|G|1 · |B̄|∞, |G|∞ · |B̄|1) // upper bound on |G · B̄|∞
22 if hA < m and hB < m then goto success

23 goto pick a prime

24 success:

25 set G = G/ contx1,...,xn(G), A = A/ lcx1,...,xn(G) and B = B/ lcx1,...,xn(G)

26 put content:

27 set G = G · cG, Ā = Ā · cĀ and B̄ = B̄ · cB̄
28 return (G, Ā, B̄)

18 DANIEL SCHULTZ

10.2. factoring. The lifting algorithms with be stated with 3 factors.

Algorithm 3: hlift (Multivariate Hensel Lifting - Quintic version)

Input: m ≥ 2
(1) (α1, . . . , αm) ∈ Rm
(2) A ∈ R[x1, . . . , xm][X] with A(X,α1, . . . , αm) squarefree
(3) (B1, B2, B3) ∈ R[x1, . . . , xm][X] (however, all but the leading coefficients of each Bi are in

R[x1, . . . , xm−1]) such that A(X,x1, . . . , xm−1, αm) = (B1B2B3)(X,x1, . . . , xm−1, αm)

Output:

(1) (B1, B2, B3) ∈ R[x1, . . . , xm][X] such that A(X,x1, . . . , xm) = (B1B2B3)(X,x1, . . . , xm) or
FAIL

1 set e = A−B1B2B3 // current error

2 set βi = Bi(X,x1, . . . , xm−1, αm) ∈ R[x1, . . . , xm−1][X]

3 for j = 1 to degxm(A) do
4 assert that e is divisible by (xm − αm)j

5 set t = taylor coefficient of (xm − αm)j in e // t ∈ R[x1, . . . , xm−1][X]

6 (δ1, δ2, δ3) = pfrac(t, (β1, β2, β3), (α1, . . . , αm−1), (degx1 A, . . . ,degxm−1
A))

// solve t = δ1β2β3 + δ2β1β3 + δ3β1β2
7 if the solved failed then return FAIL

8 set Bi = Bi + δi(xm − αm)j for each i

9 set e = A−B1B2B3

10 end

11 if e = 0 then return (B1, B2, B3) else return FAIL

ALGORITHMS FOR MULTIVARIATE POLYNOMIALS 19

Since the solutions δi must satisfy degX δi < degX Bi, the leading coefficients of the Bi will not
be changed by Algorithm 3.

Algorithm 4: hlift (Multivariate Hensel Lifting - Quartic version)

Input: m ≥ 2
(1) (α1, . . . , αm) ∈ Rm
(2) F ∈ R[x1, . . . , xm][X] with F (X,α1, . . . , αm) squarefree
(3) (A,B,C) ∈ R[x1, . . . , xm][X] (however, all but the leading coefficients of each A,B,C are

in R[x1, . . . , xm−1]) such that F (X,x1, . . . , xm−1, αm) = (ABC)(X,x1, . . . , xm−1, αm)

Output:

(1) (A,B,C) ∈ R[x1, . . . , xm][X] such that A(X,x1, . . . , xm) = (ABC)(X,x1, . . . , xm) or FAIL

1 set a0 = [(xm − αm)0]A and set dA = 0

2 set b0 = [(xm − αm)0]B and set dB = 0

3 set c0 = [(xm − αm)0]C and set dC = 0

4 for d = 1 to degxm(A) do
5 set t = [(xm − αm)d]F −

∑
i+j+k=d

i≤dA, j≤dB, k≤dC
aibjck

6 use pfrac to find ad, bd, cd from t = adb0c0 + a0bdc0 + a0b0cd
7 if the solved failed then return FAIL

8 set ad = ad + [(xm − αm)d]A

9 set bd = bd + [(xm − αm)d]B

10 set cd = cd + [(xm − αm)d]C

11 if ad 6= 0 then set dA = d

12 if bd 6= 0 then set dB = d

13 if cd 6= 0 then set dC = d

14 if dA+ dB + dC > degxm(A) then return FAIL

15 end

16 assert that dA+ dB + dC = degxm(A)

17 set A =
∑dA

i=0 ai(xm − αm)i

18 set B =
∑dB

i=0 bi(xm − αm)i

19 set C =
∑dC

i=0 ci(xm − αm)i

20 return (A,B,C)

Finally the main work horse. It is easy to solve t = δ1β2β3+δ2β1β3+δ3β1β2 in frac(R)(x1, . . . , xm−1)[X]
with pseudo remainder sequences, since δi = t(βjβk)

−1 (mod βi) and check if the δi’s are defined

20 DANIEL SCHULTZ

in R[x1, . . . , xm−1][X]. However, as intermediate expression swell is a problem in this approach.
We will use a different algorithm described as below.

Algorithm 5: pfrac (Multivariate partial fraction solver)

Input: l ≥ 0
(1) t ∈ R[x1, . . . , xl][X]
(2) (β1, β2, β3), where βi ∈ R[x1, . . . , xl][X], βi pairwise coprime in frac (R)(x1, . . . , xl)[X]
(3) (α1, . . . , αl) ∈ Rl
(4) (d1, . . . , dl) ∈ Nl degree bounds

Output:

(1) (δ1, δ2, δ3), δi ∈ R[x1, . . . , xr][X] such that t = δ1β2β3 + δ2β1β3 + δ3β1β2 and
degX δi < degX βi or FAIL

1 if r = 0 then
2 set δi = t(βjβk)

−1 (mod βi) in frac(R)[X]

3 if each δi ∈ R[X] then return (δ1, δ2, δ3) else return FAIL

4 else

5 set β̃i(X) = βi(X,x1, . . . , xr−1, αl) ∈ R[x1, . . . , xl−1][X]

6 set δi = 0 for each i

7 set e = t

8 for j = 0 to dr do
9 assert that e is divisible by (xr − αr)j

10 set t̃ = taylor coefficient of (xr − αr)j in e

11 set (δ̃1, δ̃2, δ̃3) = pfrac(t̃, (α1, . . . , αl−1), (β̃1, β̃2, β̃3), (d1, . . . , dl−1))

12 if the solved failed then return FAIL

13 set δi = δi + δ̃i(xr − αr)j
14 set e = t− (δ1β2β3 + δ2β1β3 + δ3β1β2)

15 end

16 if e = 0 then return (δ1, δ2, δ3) else return FAIL

17 end

	1. Introduction
	2. Monomial Representation
	3. Multiplication
	3.1. Dense multiplication in Z[x1,…,xn] or Zp[x1,…,xn]
	3.2. Sparse multiplication in Z[x1,…,xn] or Zp[x1,…,xn]

	4. Division
	5. Powering
	6. Interpolation
	6.1. Dense Newton Interpolation
	6.2. Sparse Zippel Interpolation
	6.3. Sparse Interpolation with the Berlekamp-Massey Algorithm

	7. Greatest Common Divisor
	7.1. Dense GCD in Zp[x1,…,xn]
	7.2. Dense GCD in Z[x1,…,xn]
	7.3. Sparse GCD in R[x1,…,xn]
	7.4. PRS
	7.5. Hensel Lifting

	8. Factorization
	8.1. Squarefree Factorization in K[x1,…,xn]
	8.2. Factorization in R[x]
	8.3. Factorization in K[x,y]
	8.4. Factorization in R[x1,…,xn][X]

	9. Absolute Factorization
	9.1. Absolute Irreduciblity Testing
	9.2. Bivariate Absolute Factorization over Q
	9.3. Bivariate Absolute Factorization over Fq
	9.4. Multivariate Absolute Factorization

	References
	10. Pseudocode
	10.1. gcd
	10.2. factoring

