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0.1 Notation

Symbol Meaning
q e2πiτ

qa e2πiaτ (not (e2πiτ )a)
qaz e2πiaz

e(z) exp(2πiz)
ζab root of unity e(a/b)

log z the logarithm with −π < Im log z ≤ π
ab exp b log a
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(x; q)n
∏n−1

k=0(1− xqk)
(x; q)∞

∏∞
k=0(1− xqk), for |q| < 1

℘(z|ω1, ω2) Weierstrass ℘ function for the lattice ω1Z+ ω2Z
ζ(z|ω1, ω2) Weierstrass ζ function
σ(z|ω1, ω2) Weierstrass σ function

℘(z|τ) ℘(z|τ, 1)
η(τ) Dedekind’s η function q1/24(q, q)∞

log η(τ) analytic logarithm 2πiτ
24
−
∑∞

n=1
qn

n(1−qn)

j(τ) E4(τ)
3η(τ)−24

γ2(τ) j1/3 = E4(τ)η(τ)
−8

γ3(τ) (j − 1728)1/2 = E6(τ)η(τ)
−12

Θ[v⃗](z|τ) general elliptic Θ function with characteristic v⃗
Θi(z|τ) Jacobi’s four Θ functions with half-integer characteristics
Θi(z) Θi(z|τ)
Θi(τ) Θi(0|τ)
Γ(N) {M ∈ SL2(Z) |M ≡ ( 1 0

0 1 ) mod N}
Γ1(N) {M ∈ SL2(Z) |M ≡ ( 1 ∗

0 1 ) mod N}
Γ1(N) {M ∈ SL2(Z) |M ≡ ( 1 0

∗ 1 ) mod N}
Γ0(N) {M ∈ SL2(Z) |M ≡ ( ∗ 0

∗ ∗ ) mod N}
Γ0(N) {M ∈ SL2(Z) |M ≡ ( ∗ ∗

0 ∗ ) mod N}
Γ0
0(N) {M ∈ SL2(Z) |M ≡ ( ∗ 0

0 ∗ ) mod N}
u.v dot product of two vectors
u.M product of vector u interpreted as a row vector and the matrix M
M.v product of matrix M and the vector v interpreted as a column vector
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Chapter 1

Introduction

The generating functions for many interesting combinatorial objects turn out to be modular forms.

1.1 Partitions and the η function

We have

1

(q; q)∞
= (1 + q + q2 + q3 + · · · )(1 + q2 + q4 + q6 + · · · )(1 + q3 + q6 + q9 + · · · ) · · ·

=
∞∑
n=0

p(n)qn,

where p(n) is the number of partitions of n. We have the properties

� p(5n+ 4) ≡ 0 mod 5

� p(7n+ 5) ≡ 0 mod 7

� p(11n+ 6) ≡ 0 mod 11

� p(59413n+ 111247) ≡ 0 mod 13 (see [3])

The three primes 5, 7, 11 are unique in this way. Similar congruences hold at powers of these primes.

1.2 Sums of squares and the θ function

Set
θ(τ) =

∑
n∈Z

qn
2

.

Then, the generating function for #{(x1, . . . , xk)|n = x21+· · ·+x2k}, which is the number of representations
of n by the sum of k squares, is θ(τ)k. If χ4 is the non-trivial character modulo 4 and 4|c and ad− bc = 1,
will we see that θ satisfies the weight 1/2 relation

θ

(
aτ + b

cτ + d

)
=
( c
d

)
χ4(d)

−1/2
√
cτ + dθ(τ),

and characterize all functions that satisfy even powers of this functional equation. This leads to and easy
proof of

{(x, y) ∈ Z2|n = x2 + y2} = 4
∑
d|n

χ4(d).
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Similar formulas exists for other θ functions.

{(x, y) ∈ Z2|n = x2 + xy + y2} = 6
∑
d|n

χ3(d).

1.3 Ramanujan’s τ Function

Define τ(n) by

η(τ)24 = q(q; q)24∞ =:
∞∑
n=1

τ(n)qn.

The following properties were observed by Ramanujan.

� τ(mn) = τ(m)τ(n) for (m,n) = 1

� τ(pk+1) = τ(pk)τ(p)− p11τ(pk−1)

� τ(p) ≤ 2p11/2

� τ(n) ≡ σ11(n) mod 691

The weight 12 relation is satisfied by η(τ)24 is

η

(
aτ + b

cτ + d

)24

= (cτ + d)12η(τ)24.

The first two are equivalent to the Euler product

f(s) =
∞∑
n=1

τ(n)

ns
=
∏
p

1

1− τ(p)p−s + p11−2s
,

and the weight 12 transformation formula gives the reflection formula

f(s)Γ(s)

(2π)s
=
f(12− s)Γ(12− s)

(2π)12−s
.

1.4 Mock Modular Forms

By considering the Durfee square, we have

1

(q; q)∞
=

∞∑
n=0

qn
2

(q; q)2n
,

which is essentially a (weak) modular form of weight −1/2. The function

f(τ) =
∞∑
n=0

qn
2

(−q; q)2n
turns out to not be modular, but can be made modular by adding some non-holomorphic function to it.
Set

F (z) = q−1
z f(24z) +

√
−8
∫ i∞

−z̄

∑
n∈Z χ12(n)nq

n2√
−i(τ + z)

dτ .

If ad− bc = 1 and 144|c, we have

F

(
aτ + b

cτ + d

)
=

(
12c

d

)
χ4(d)

−1/2
√
cτ + dF (τ).
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1.5 Special Values of the j Function

Let K = Q(
√
−d) be an imaginary quadratic field and let Z + Zτ be its ring of integers. Then, j(τ) is

an algebraic integer of degree h(−d) over Q, and K(j(τ)) is the maximal unramified Abelian extension
of K.
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Chapter 2

Elliptic Functions and Basic Modular
Forms on SL2(Z)

2.1 Theory of Elliptic Functions

Definition 2.1.1. Let ω1, ω2 ∈ C with Im(ω1/ω2) > 0. An elliptic function modulo Zω1 + Zω2 is a
meromorphic function C→ C satisfying

f(z) = f(z + ω1) = f(z + ω2).

For the order of a non-constant function at a point z0, we say ordz0(f(z)) = n if

f(z) = (z − z0)n(c+O(z − z0)), c ̸= 0,

and ord f(z), the (total) order of the function f(z), is the number of poles of f counted according to
multipliticy (modulo Λ).

Proposition 2.1.2. Let f be a non-constant elliptic function modulo Λ. Then,

1.
∑

z∈C/Λ resz(f) = 0

2.
∑

z∈C/Λ ordz(f) = 0

3.
∑

z∈C/Λ z ordz(f) ∈ Λ

4. ord f ≥ 2.

Proof. Let C denote the counterclockwise traversal of the parallelogram with vertices 0, ω2, ω2 + ω1, ω1.
Then, ∑

z∈C/Λ

resz(f) =
1

2πi

∫
C

f(z)dz = 0

∑
z∈C/Λ

ordz(f) =
1

2πi

∫
C

f ′(z)

f(z)
dz = 0

7



since integrals along opposite sides cancel. Next∑
z∈C/Λ

z ordz(f) =
1

2πi

∫
C

zf ′(z)

f(z)
dz

=
1

2πi

∫ ω1

0

zf ′(z)

f(z)
− (ω2 + z)f ′(ω2 + z)

f(ω2 + z)
dz

+
1

2πi

∫ ω2

0

−zf
′(z)

f(z)
+

(ω1 + z)f ′(ω1 + z)

f(ω1 + z)
dz

= −ω2 ·
1

2πi

∫ ω1

0

f ′(z)

f(z)
dz

+ ω1 ·
1

2πi

∫ ω2

0

f ′(z)

f(z)
dz

= −ω2

(
1

2πi
log f(z)

]ω1

0

)
+ ω1

(
1

2πi
log f(z)

]ω2

0

)
∈ Λ

since ω1 (and ω2) is a period of the function f(z), so the logarithm must change by an integral multiple
of 2πi. For (4), if f had order 0, then it has no poles, and is thus bounded so is constant by Liouville’s
theorem. If f had order 1, then it has a simple pole with non-zero residue, which contradicts (1).

Later will we see that part (3) of Proposition 2.1.2 has a converse, that is, we can construct an elliptic
function with any poles and zeros that satisfy (3).

2.2 The Weierstrass ℘ Function

For a lattice Λ, let Λ′ denote Λ− 0. Set

℘(z|ω1, ω2) =
1

z2
+
∑
ω∈Λ′

1

(z + ω)2
− 1

ω2
,

℘′(z|ω1, ω2) =
∑
ω∈Λ

−2
(z + ω)3

,

Gk(ω1, ω2) =
∑
ω∈Λ′

1

ωk
.

The sum for ℘(z) is arranged so that

1

(z + ω)2
− 1

ω2
= O(w−3)

which makes the sum over Λ absolutely convergent. The series for G2 is not absolutely convergent, so
this is not a proper definition of G2. Later, when defining E2, we will fix the order of summation.

Proposition 2.2.1. Set Λ = Zω1 +Zω2. Then, ℘(z|ω1, ω2) is an elliptic function of order 2 mod Λ, and
we have:

1. The power series expansion

℘(z|ω1, ω2) =
1

z2
+

∞∑
k=1

(2k + 1)G2k+2(ω1, ω2)z
2k.
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2. For λ ̸= 0 and integers a, b, c, d with ad− bc = 1,

℘(z|ω1, ω2) = λ2℘(λz|λω1, λω2),

℘(z|ω1, ω2) = ℘(z|aω1 + bω2, cω1 + dω2).

3. The differential equation (set g2 = 60G4(ω1, ω2), g3 = 140G6(ω1, ω2))

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3.

Proof. From the definitions, it is clear that ℘′(z) is elliptic modulo Λ and ℘(z) is an even function. Let
ω ∈ Λ. Since ℘′(z+ω) = ℘′(z), it follows that ℘(z+ω) = ℘(z)+η for some constant η. Setting z = −ω/2
shows that η = 0. For (2), set M = ( a b

c d ). Then,

℘(z|aω1 + bω2, cω1 + dω2) =
1

z2
+

∑
n⃗∈Z2−{0,0}

1

(z + n⃗.M.(ω1, ω2)⊺)2
− 1

(n⃗.M.(ω1, ω2)⊺)2

=
1

z2
+

∑
m⃗∈Z2−{0,0}

1

(z + m⃗.(ω1, ω2)⊺)2
− 1

(m⃗.(ω1, ω2)⊺)2

= ℘(z|ω1, ω2).

Since det(M) = 1, n⃗.M ranges over all of Z2−{0, 0} and includes each point once, the change of variables
m⃗ = n⃗.M is justified.

For (3),

℘′(z)2 =
4

z6
− 24G4

z2
− 80G6 +O(z2)

4℘(z)3 =
4

z6
+

36G4

z2
+ 60G6 +O(z2)

60℘(z) =
60G4

z2
+O(z2).

From this it is clear that ℘′(z)2 − 4℘(z)3 + 60G4℘(z) is an entire elliptic function, hence it is a constant.
This constant is also easily seen to be −140G6.

2.3 Eisenstein Series

Due to the homogeneity property in Proposition 2.2.1, without loss of generality we can set ω1 = τ and
ω2 = 1. In this case we have

℘(z|τ, 1) = (cτ + d)−2℘

(
z

cτ + d

∣∣∣aτ + b

cτ + d
, 1

)
,

which shows that the power series coefficients satisfy

G2k

(
aτ + b

cτ + d
, 1

)
= (cτ + d)2kG2k(τ, 1), k ≥ 2.

It will be convenient to have a normalization of these functions E2k(τ) with E2k(i∞) = 1. For k ≥ 1, set

E2k(τ) =
G2k(τ, 1)

G2k(i∞, 1)

=
1

2ζ(2k)

∞∑
m=−∞

∞∑
n=−∞

(m,n)̸=(0,0)

1

(mτ + n)2k
.
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Proposition 2.3.1. The Eisenstein series E2k have the following properties.

1. For k ≥ 1, we have

E2k(τ) = 1 +
2

ζ(1− 2k)

∞∑
n=1

n2k−1qk

1− qk
.

2. For k ≥ 2, E2k(τ) is a holomorphic function H→ C satisfying

E2k

(
aτ + b

cτ + d

)
= (cτ + d)2kE2k(τ).

We cannot conclude the last property for k = 1 because the series defining G2(τ, 1) is not absolutely
convergent. It turns out that E2(τ) has a similar functional equation with a small “error” term.

Proof. Using Exercise 2.12.3,

E2k(τ) =
1

2ζ(2k)

(
∞∑
n=1

2

(n)2k
+

∞∑
m=1

∞∑
n=−∞

1

(mτ + n)2k
+

1

(−mτ + n)2k

)

= 1 +
1

ζ(2k)

∞∑
m=1

∞∑
n=−∞

1

(mτ + n)2k

= 1 +
2

ζ(1− 2k)

∞∑
m=1

∞∑
j=1

j2k−1qjm

= 1 +
2

ζ(1− 2k)

∞∑
j=1

j2k−1 qj

1− qj

2.4 Modular Discriminant ∆(τ ) and Klein’s Absolute Invariant

j(τ )

Let ei(τ) be the roots of the cubic polynomial in the differential equation for ℘, that is,

(℘′)2 = 4℘3 − g2℘− g3
= 4(℘− e1)(℘− e2)(℘− e3).

The discriminant of the cubic polynomial is therefore

∆(τ) : = 16(e1 − e2)2(e2 − e3)2(e3 − e1)2

= −64 (e1e2 + e1e2 + e3e1)
3 − 432e21e

2
2e

2
3

= g32 − 27g23,

where we have used

0 = e1 + e2 + e3,

g2 = −4 (e1e2 + e2e3 + e3e1) ,

g3 = 4e1e2e3.
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Also, set

j(τ) =
1728g2(τ)

3

∆(τ)
.

This function is known as Klein’s absolute invariant, or just the j function.

Proposition 2.4.1. For ∆(τ) and j(τ) we have

1. Representation in E4 and E6 and q-series expansions:

∆(τ) =
64π12

27
(E3

4 − E2
6) = (2π)12q +O(q2),

j(τ) =
1728E3

4

E3
4 − E2

6

=
1

q
+ 744 +O(q).

2. For ad− bc = 1,

∆

(
aτ + b

cτ + d

)
= (cτ + d)12∆(τ),

j

(
aτ + b

cτ + d

)
= j(τ).

3. At τ = i∞, ∆(τ) vanishes and j(τ) blows up.

4. ∆(τ) does not vanish (equiviently, j(τ) has no poles) at any τ ∈ H.

Proof. Exercise 2.12.2.

2.5 Basic Properties of SL2(Z)
For the Eisenstein series, we were able to find the transformation formula for any a, b, c, d directly.
However, in most cases we will just prove the transformation formula for specific a, b, c, d and hope that
the result for general a, b, c, d can be obtained by iterating these special cases. Set

Γ(1) = SL2(Z),

i.e. the “modular group” or “full modular group”. A matrix in SL2(Z) acts on H via(
a b
c d

)
: τ 7→ aτ + b

cτ + d

Note that

Im

(
aτ + b

cτ + d

)
=

Im τ

|cτ + d|2
(2.5.1)

Two important elements are S and T :

S =

(
0 −1
1 0

)
: τ 7→ −1

τ
,

T =

(
1 1
0 1

)
: τ 7→ τ + 1.

Also set
F =

{
τ ∈ H | −1

2
≤ Re τ ≤ 1

2
and |τ | ≥ 1

}
.

The left and right edges with Re τ = ±1
2
are identified via T , and the left and right edges of F on |τ | = 1

are identified via S. We will also formally include i∞ in F as well.
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Proposition 2.5.1. For Γ(1), we have

1. F is a fundamental for H/Γ(1) with the appropriate edges identitfied.

2. S and T generate Γ(1)/± I.

3. For any τ ∈ F the isotropy subgroup Γ(1)τ := {g ∈ Γ(1)|gτ = τ} is ±I except in the cases

� τ = i∞, Γ(1)τ := ±{T k}k∈Z
� τ = i, Γ(1)τ := ±{I, S}
� τ = e(1/3), Γ(1)τ := ±{I, ST, (ST )2}
� τ = e(1/6), Γ(1)τ := ±{I, TS, (TS)2}

Proof. Sketch of (1) and (3): Given τ ∈ H, we can apply T and S to get a point in F by repeating the
following steps. Apply T k to get τ inside −1

2
≤ Re τ ≤ 1

2
. If |τ | < 1 apply S. This must terminate

with a point in F because Im τ only increases throughout the process. Now suppose τ1, τ2 ∈ F with
Im τ2 ≥ Im τ1 are related by τ2 = (aτ1 + b)/(cτ1 + d). From (2.5.1), this means that |cτ1 + d| ≤ 1. Since
τ1 is in F this restricts c to c = 0, 1,−1.

(2). Given g ∈ Γ(1) take any τ in the interior of F . Use S and T to get gτ back into F and use (1)
to conclude that g is a product of T and S (modulo ±I).

2.6 The η function and E2

The logarithmic derivative of
η(τ) := q1/24(q; q)∞

is simply related to E2(τ).

1

2πi

d

dτ
log η(τ) =

1

2πi

d

dτ

(
2πiτ

24
+

∞∑
n=1

log(1− qn)

)

=
1

24
+ q

d

dq

∞∑
n=1

log(1− qn)

=
1

24
−

∞∑
n=1

nqn

1− qn

=
1

24
E2(τ).

Lemma 2.6.1 (Poisson Summation Formula for Cosine). Under suitable restrictions of the function f ,
if

fc(y) =

∫ ∞

−∞
f(x) cos(2πxy)dx,

then
∞∑

n=−∞

fc(n) =
f(0)

2
+

∞∑
n=1

f(n).

Proposition 2.6.2. For ( a b
c d ) ∈ Γ(1), we have

12



1. E2 transformation:

E2 (τ + 1) = E2(τ),

τ−2E2

(
−1

τ

)
= E2(τ) +

12

2πiτ
,

(cτ + d)−2E2

(
aτ + b

cτ + d

)
= E2(τ) +

12c

2πi(cτ + d)
.

2. η transformation:

η (τ + 1) = e

(
1

24

)
η(τ),

η

(
−1

τ

)
=
√
−iτη(τ),

η

(
aτ + b

cτ + d

)
= ϵη

(
a b
c d

)√
−i(cτ + d)η(τ),

where ϵη( a b
c d ) is some 24th root of unity.

Proof. The first parts of (1) and (2) are trivial, so we start with the second part of (1). In Lemma 2.6.1
set

f(x) = −24
∞∑
n=1

xe(nτx) =
−24xqx

1− qx
,

f(0) =
24

2πiτ
.

The result

fc(y) =
1

2ζ(2)

∞∑
n=1

1

(nτ + y)2
+

1

(−nτ + y)2

=
1

2ζ(2)

∑
n∈Z
n̸=0

1

(nτ + y)2

is elementary, so the assertion of Lemma 2.6.1 gives

1

2ζ(2)

∞∑
m=−∞

∞∑
n=−∞

n̸=0

1

(nτ +m)2
=

12

2πiτ
− 24

∞∑
n=1

nqn

1− qn
,

or,
1

2ζ(2)

(
−2ζ(2) + τ−2G2

(
−1

τ

))
=

12

2πiτ
− 1 + E2(τ),

which is the second part of (1). The second part of (2) follows from integrating the second part of (1)
and using τ = i to evaluate the constant of integration. The third parts of each follow from the first two
since S and T generate Γ(1).
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Note that the η function is non-vanishing on H so we may define a logarithm

log η(τ) :=
2πiτ

24
+

∞∑
n=1

log (1− qn) .

This also entails that we may define a logarithm of the corresponding multiplier system

log ϵη( a b
c d ) := log η

(
aτ + b

cτ + d

)
− 1

2
log(

√
−i(cτ + d))− log η(τ).

Now we give a formula for log ϵη( a b
c d ) in terms of Dedekind sums and a slightly simpler formula for its

exponential ϵη( a b
c d ). For odd primes p let

(
c
p

)
be the usual Legendre symbol. Extend this to all positive

odd d by means of the prime factorization d = pe11 · · · penn via( c
d

)
=

(
c

p1

)e1

· · ·
(
c

pn

)en

.

Then, extend to negative odd d by ( c
d

)
= (−1)

sign(d)−1
2

sign(c)−1
2

(
c

|d|

)
.

Note we have the generalized quadratic reciprocity and periodicity( c
d

)
= (−1)

d−1
2

c−1
2

(
d

|c|

)
, for c, d odd(

c+ d

d

)
=

{
−
(
c
d

)
, d < 0 and sign(c) ̸= sign(c+ d)

+
(
c
d

)
, otherwise

,

(
d

c+ 2d

)
=

{
−
(
d
c

)
, d ≡ 2, 3 mod 4

+
(
d
c

)
, d ≡ 0, 1 mod 4

,

which are useful in evaluating the Jacobi symbol.

Proposition 2.6.3. For c > 0, the multiplier system of η(τ) satisfies

ϵη

(
a b
c d

)
=

{(
d
c

)
ζ
3(1−c)+bd(1−c2)+c(a+d)
24 , c odd(

c
|d|

)
ζ
3d+ac(1−d2)+d(b−c)
24 , d odd

,

log ϵη

(
a b
c d

)
= 2πi

(
a+ d

24c
+
S(−d, c)

2

)
,

where S is the Dedekind sum S(h, k) =
∑k−1

r=1
r
k
B̄1

(
hr
k

)
and B̄1(x) is the periodic Bernoulli polynomial

B̄1(x) =
∞∑
n=1

−sin(2πnx)

πn
= FracPart(x)− 1

2
.

Proof. The first formula can be found in [10, pg. 51]. The second formula can be found in [2, sec. 3.4].
The first formula can also be deduced directly from the main result of Section 2.11.
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2.7 Recursions for the Eisenstein Series

The main result of this section is that the Eisenstein series E8, E10, . . . can be expressed as polynomials
in just E4 and E6. In the next chapter we will see that this is no accident and that the representation is
unique.

Proposition 2.7.1. For n ≥ 0

E2n+8(τ) =
∑

0≤k,l≤n
k+l=n

6(2k + 3)(2l + 3)ζ(2k + 4)ζ(2l + 4)

(n+ 1)(2n+ 7)(2n+ 9)ζ(2n+ 8)
E2k+4(τ)E2l+4(τ).

Proof. We have

℘′′(z) =
6

z4
+ 6G4 + 60G6z

2 + 210G8z
4 + 504G10z

6 +O(z8),

6℘(z)2 =
6

z4
+ 36G4 + 60G6z

2 +
(
54G2

4 + 84G8

)
z4 + (180G4G6 + 108G10) z

6 +O(z8),

so ℘′′(z)− 6℘(z)2 must be a constant. The assertion follows by equating the coefficients of z4, z6, . . . to
zero in the difference ℘′′(z)− 6℘(z)2. Recall that E2k =

1
2ζ(2k)

G2k.

2.8 Elliptic Θ Functions

Besides the Eisenstein series, there are other ways of constructing modular forms. The main ingredient
is the Poisson summation formula applied to the Gaussian distribution. For arbitrary α, β ∈ R, define
the Θ function with characteristics α, β as

Θ

[
α
β

]
(z|τ) =

∑
n∈Z

e
(
(z + β) (n+ α) + τ (n+ α)2 /2

)
The variable z may take any value in C, but τ is constrained to H, where the sum absolutely convergent.
Jacobi’s four Θ functions are then

Θ1(z|τ) = Θ

[
1/2
1/2

]
(z|τ) = −2 sin(πz)q1/8 + 2 sin(3πz)q9/8 +O(q17/8),

Θ2(z|τ) = Θ

[
1/2
0/2

]
(z|τ) = 2 cos(πz)q1/8 + 2 cos(3πz)q9/8 +O(q17/8),

Θ3(z|τ) = Θ

[
0/2
0/2

]
(z|τ) = 1 + 2 cos(2πz)q1/2 + 2 cos(4πz)q2 +O(q5/2),

Θ4(z|τ) = Θ

[
0/2
1/2

]
(z|τ) = 1− 2 cos(2πz)q1/2 + 2 cos(4πz)q2 +O(q5/2).

Proposition 2.8.1. For integers A and B, we have

1. Quasi-periodicity relation:

Θ

[
α
β

]
(z + Aτ +B|τ) = e

(
Bα− Aβ − Az − A2τ

2

)
Θ

[
α
β

]
(z|τ).

2. Shift of characteristics:

Θ

[
α + A
β +B

]
(z|τ) = e(αB)Θ

[
α
β

]
(z|τ)
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Proof. For (1), let
sn(z) = e

(
(z + β) (n+ α) + τ (n+ α)2 /2

)
.

We have

Θ

[
α
β

]
(z + Aτ +B|τ) =

∑
n∈Z

sn(z + Aτ +B)

= e

(
−AB − Aβ − Az − A2τ

2

)∑
n∈Z

sn+A(z +B)

= e

(
−Aβ − Az − A2τ

2

)∑
n∈Z

sn(z +B)

= e

(
−Aβ − Az − A2τ

2

)
e(Bα +Bn)

∑
n∈Z

sn(z)

= e

(
Bα− Aβ − Az − A2τ

2

)
Θ

[
α
β

]
(z|τ).

(2) says that Θ doesn’t change much when the characteristics are changed by integers and follows by

shifting n→ n− A in the series definition of Θ

[
α + A
β +B

]
(z|τ).

Lemma 2.8.2 (Poisson Summation Formula). Under suitable restrictions of the function f , if

f̂(y) =

∫ ∞

−∞
f(x) exp(−2πxy)dy,

then
∞∑

n=−∞

f̂(n) =
∞∑

n=−∞

f(n).

Proposition 2.8.3. For ( a b
c d ) ∈ Γ(1), we have

1. Transformation under T :

Θ1(z|τ + 1) =
√
iΘ1(z|τ),

Θ2(z|τ + 1) =
√
iΘ2(z|τ),

Θ3(z|τ + 1) = Θ4(z|τ),
Θ4(z|τ + 1) = Θ3(z|τ).

2. Transformation under S:

Θ1

(
z

τ

∣∣∣− 1

τ

)
= −i

√
−iτe

(
z2

2τ

)
Θ1(z|τ),

Θ2

(
z

τ

∣∣∣− 1

τ

)
=
√
−iτe

(
z2

2τ

)
Θ4(z|τ),

Θ3

(
z

τ

∣∣∣− 1

τ

)
=
√
−iτe

(
z2

2τ

)
Θ3(z|τ),

Θ4

(
z

τ

∣∣∣− 1

τ

)
=
√
−iτe

(
z2

2τ

)
Θ2(z|τ).
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3. General transformation for Θ1:

Θ1

(
z

cτ + d

∣∣∣aτ + b

cτ + d

)
= ϵΘ1

√
−i(cτ + d)e

(
cz2

2(cτ + d)

)
Θ1(z|τ)

where ϵΘ1 ((
a b
c d )) is some 8th root of unity.

4. General transformation for arbitrary characteristics:

Θ

[
1
2
+ α

1
2
+ β

](
z

cτ + d

∣∣∣aτ + b

cτ + d

)
= ϵΘ1

√
−i(cτ + d)e

(
cz2

2(cτ + d)

)
Θ

[
1
2
+ aα + cβ

1
2
+ bα + dβ

]
(z|τ)

×e
(
−abα

2

2
− bcαβ − cdβ2

2

)
e

(
−(a− 1)α + cβ

2

)
Proof. The transformations in (1) are straightforward, so we concentrate on (2), where the proof for Θ3

will give the idea of the proof of the others. In Lemma 2.8.2 set

f(x) = e
(
zx+ τx2/2

)
It is easy to compute

f̂(y) =
e
(

zy
τ
− y2

2τ

)
√
−iτe

(
z2

2τ

) ,
so the transformation for Θ3 follows. (3) follows by iterating (1) and (2).

The assertion (4) is equivalent to (3) since the Θ function with an arbitrary characteristic is no more
general than Θ1(z|τ). We can write Θ1 as a shift of the Θ function with general characteristics as

Θ1(z|τ) = e

(
α(ατ − 2z − 1)

2

)
Θ

[
1
2
+ α

1
2
+ β

]
(z − ατ − β|τ)

and then transform part (3) of Proposition 2.8.3 . The details are messy but straightforward.

Proposition 2.8.4. We have

1. Θ1(z) is an odd function of z

2. The zero set of Θ1(z) is exactly Z+ Zτ

3. Jacobi Triple Product:

Θ1(z|τ) = −iq−1/2
z q1/8(qz; q)∞(q/qz; q)∞(q; q)∞.

4. As z → 0
Θ1(z|τ) = −2πη(τ)3z +O(z3).

5. ϵΘ1

(
a b
c d

)
= −iϵη

((
a b
c d

))3

.

Proof. (1) follows by replacing n→ −1− n in the series definition of Θ1.

Θ1(z|τ) =
∑
n∈Z

q
1
2
(n+ 1

2
)2i(−1)ne

(
z

(
n+

1

2

))
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For (2), we integrate around a fundamental parallelogram to get the number of zeros of Θ1 modulo
the lattice as

1

2πi

(∫ w+1

w

+

∫ w+1+τ

w+1

+

∫ w+τ

w+1+τ

+

∫ w

w+τ

)
d log Θ1(z).

By Proposition 2.8.1, we have

d log Θ1(z + 1) = d log Θ1(z)

d log Θ1(z + τ) = d log Θ1(z)− 2πidz

This first equation says that the second and fourth integrals cancel completely. This second equation
says that the first and third integrals combine to give a total of

1

2πi

∫ w+1

w

2πidz = 1

zero in a fundamental parallelogram.
(3) is a well-known identity, and (4) follows from rewriting (3) as

Θ1(z|τ)
i(q

1/2
z − q−1/2

z )
= q1/8(qqz; q)∞(q/qz; q)∞(q; q)∞,

and letting z → 0.
(5) follows from differentiating part (3) of Proposition 2.8.3 and substituting part (4) here.

Proposition 2.8.5. We have

1. Relation between ℘(z) and Θ1(z):

℘(z|τ) = − ∂2

∂z2
log Θ1(z|τ)−

π2

3
E2(τ).

2. If p1 + · · ·+ pr = q1 + · · ·+ qr, then

Θ1(z − q1|τ) · · ·Θ1(z − qr|τ)
Θ1(z − p1|τ) · · ·Θ1(z − pr|τ)

is an elliptic function modulo Z+ Zτ with poles p1, . . . , pr and zeros q1, . . . , qr.

3. Factorization of ℘(z1)− ℘(z2):

℘(z1)− ℘(z2) = (2πi)2η(τ)6
Θ1(z1 − z2)Θ1(z1 + z2)

Θ1(z1)2Θ1(z2)2
.

Proof. From Propositions 2.8.1 and 2.8.4, we see that

℘(z|τ) + ∂2

∂z2
log Θ1(z, τ)

is an entire elliptic function, hence it is some constant C. In order to evaluate this constant we need to
get the next coefficient in the expansion of Θ1(z), i.e.

Θ1(z) = −2πη(τ)3(z +
C

2
z3 +O(z5)).
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To this end, note that

∂3

∂z3
Θ1(z|τ) = (2πi)3

∑
n∈Z

(
n+

1

2

)3

e

((
z +

1

2

)(
n+

1

2

)
+
τ

2

(
n+

1

2

)2
)

= 4πi
∂2

∂τ∂z
Θ1(z|τ).

Therefore,

−2πη(τ)3C
2
· 6 =

∂3

∂z3
Θ1(z|τ)

∣∣∣
z=0

= 4πi
∂2

∂τ∂z
Θ1(z|τ)

∣∣∣
z=0

= −8π2i
∂

∂τ
η(τ)3

= 2π3η(τ)3E2(τ),

and so C = −π2

3
E2(τ).

(2) Follows immediately from Proposition 2.8.1, which says that

Θ1((z + 1)− a|τ) = −Θ1(z − a|τ),
Θ1((z + τ)− a|τ) = −e(a− z − τ/2)Θ1(z − a|τ).

As long as e(q1 + · · ·+ qr − p1 − · · · − pr) = 1, the displayed quotient will be an elliptic function modulo
Z+ Zτ .

For (3), note that there is a constant A, depending only on τ , such that

℘(z1)− ℘(z2) = A
Θ1(z1 − z2)Θ1(z1 + z2)

Θ1(z1)2Θ1(z2)2
,

since both sides have the same poles and zeros as functions of either z1 or z2. To evaluate this constant,
multiply both sides by z21 and let z1 → 0. This gives

1 = A
Θ1(−z2)Θ1(z2)

Θ1(z2)2
lim
z1→0

z21
Θ1(z1)2

= −A lim
z1→0

z21
Θ1(z1)2

= −A(−2πη(τ)3)−2.

2.9 Γ(2) and the Asymptotic of Θ Near the Cusps

According to Proposition 2.8.3, we have a surjective homomorphism Γ(1)→ S3, where S3 the the group
of permutations on the Θ functions Θ2,Θ3,Θ4. One might wonder what the kernel and stabilizer of, say,
Θ3 is, that is, what the groups

G1 =

{(
a b
c d

)
∈ Γ(1) | Θi

(
0
∣∣∣aτ + b

cτ + d

)8

= (cτ + d)4Θi(0|τ)8 for all i ∈ {2, 3, 4}

}
,

G2 =

{(
a b
c d

)
∈ Γ(1) | Θ3

(
0
∣∣∣aτ + b

cτ + d

)8

= (cτ + d)4Θ3(0|τ)8
}

19



are. To answer this question we can apply part (4) of Proposition 2.8.3 to see that the kernel of the
homomorphism Γ(1)→ S3 consists of those ( a b

c d ) ∈ Γ(1) for which

aα + cβ = α mod 1,

bα + dβ = β mod 1,

for all half-integers α and β. Clearly this is the group

G1 = Γ(2) :=

{(
a b
c d

)
∈ Γ(1) |

(
a b
c d

)
≡
(

1 0
0 1

)
mod 2

}
.

By the first isomorphism theorem, we have

Γ(1)/Γ(2) ≃ S3 = {Γ(2), (ST )Γ(2), (ST )2Γ(2), (S)Γ(2), (T )Γ(2), (TST )Γ(2)}.

The following groups between Γ(1) and Γ(2) have important names:

Γ0(2) = {Γ(2), (T )Γ(2)}

=

{(
a b
c d

)
∈ Γ(1) | c ≡ 0 mod 2

}
,

Γϑ = {Γ(2), (S)Γ(2)}

=

{(
a b
c d

)
∈ Γ(1) | ab ≡ cd ≡ 0 mod 2

}
.

Note that G2 = Γϑ, which is known as the theta subgroup of Γ(1) while Γ0(2) is know as the principal
Hecke subgroup of level 2.

The main goal of this section is to establish asymptotic formulas for the Θ functions near the cusps
in order to obtain explicit formulas for the roots of unity involved in the multiplier systems for these
functions. When the function vanishes at a cusp, it seems that we need to use the modular inverse symbol

x−1
mod y = z whenever there is a z such that zx ≡ 1 mod y and 0 ≤ z/y < 1.

Note that we always have a reciprocity property given by

x−1
mod y

y
+
y−1

mod x

x
= 1 +

1

xy
.

When it is clear, we will set Θ(τ) = Θ(0|τ).
Proposition 2.9.1. Let c and d be any integers with (c, d) = 1 and c ̸= 0. Then, as t→ 0+,

1. Relation to exponential sums

√
ictΘ3

(
it− d

c

)
∼ 1√
−ic

|c|∑
n=1

ζ−dn2

2c , cd even

e
π

4c2t

2

√
ictΘ3

(
it− d

c

)
∼ 1√
−4ic

|c|∑
n=1

(
ζn2c + ζ−n

2c

)
ζ−dn2

2c , cd odd

2. Θ3: √
ictΘ3

(
it− d

c

)
∼
( c
d

)
ζ1−d
8 , c even d odd

e
π

4c2t

2

√
ictΘ3

(
it− d

c

)
∼
(
d

|c|

)
ζc8ζ

(8d)−1
mod c

c , c odd d odd

√
ictΘ3

(
it− d

c

)
∼
(
d

|c|

)
ζc8 , c odd d even
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3. Θ4: √
ictΘ4

(
it− d

c

)
∼
( c
d

)
ζ1+2c−d−cd
8 , c even d odd

√
ictΘ4

(
it− d

c

)
∼
(
d

|c|

)
ζc8 , c odd d odd

e
π

4c2t

2

√
ictΘ4

(
it− d

c

)
∼
(
d

|c|

)
ζc8ζ

(8d)−1
mod c

c , c odd d even

4. Θ2:
e

π
4c2t

2

√
ictΘ2

(
it− d

c

)
∼
( c
d

)
ζ3d−3
8 ζ

d−1
mod 8c

8c , c even d odd

√
ictΘ2

(
it− d

c

)
∼
(
d

|c|

)
ζcd+3c+2d+2
8 , c odd d odd

√
ictΘ2

(
it− d

c

)
∼
(
d

|c|

)
ζcd+c−2d
8 , c odd d even

Proof. To avoid complications, the factor
√
−ict is handled like

√
|c|t. This results in a ζ

sgn(c)
8 canceling

in the formulas, since √
ict =

√
|c|tζsgn(c)8 .

For (1), if cd is even then the function of n given by e
(

−dn2

2c

)
has c as a period. Therefore,

Θ3

(
it− d

c

)
=
∑
n∈Z

e

(
−dn2

2c

)
e−πn2t

=

|c|∑
n=1

e

(
−dn2

2c

) ∑
m∈Z

m≡n mod c

e−πm2t

=

|c|∑
n=1

e

(
−dn2

2c

)
e−πc2tΘ3

(
icnt|ic2t

)
=

|c|∑
n=1

e

(
−dn2

2c

)
1

|c|
√
t
Θ3

(
n

c

∣∣∣ i
c2t

)

∼ 1√
|c|

|c|∑
n=1

ζ−dn2

2c × 1√
|c|t

.

If cd is odd, then Θ3 vanishes at this cusp, so the evaluation is slightly more difficult. In this case e
(

dn2

2c

)
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changes sign when n is incremented by c, so temporarily setting q = e−
π

4c2t ,

Θ3

(
it− d

c

)
=

|c|∑
n=1

e

(
dn2

2c

) ∑
m∈Z

m≡n mod 2|c|

e−πm2t − e−π(m+c)2t

=

|c|∑
n=1

e

(
dn2

2c

) Θ3

(
n
2c

∣∣∣ i
4c2t

)
−Θ3

(
c+n
2c

∣∣∣ i
4c2t

)
2|c|
√
t

=

|c|∑
n=1

e

(
−dn2

2c

) (1 + 2q cos
(
πn
c

)
+ · · ·

)
−
(
1 + 2q cos

(
π(n+c)

c

)
+ · · ·

)
2|c|
√
t

∼ 1√
|c|

|c|∑
n=1

e

(
−dn2

2c

)
cos

(
2nπ

c

)
× 2q√

|c|t
.

For (2), let T (d, c) denote limt→0

√
|c|tΘ3

(
it− d

c

)
. By (1),

T (d, c) =
1√
|c|

|c|∑
n=1

ζ−dn2

2c =

{(
d
|c|

)
ζ
c−sgn(c)
8 , c odd d even(

c
d

)
ζ
1−d−sgn(c)
8 , c even d odd

,

where we have used the classical evaluation of quadratic Gauss sums (for any integers p and q with q > 0
and (p, q) = 1

1
√
q

q∑
n=1

ζpn
2

q =


(

p
q

)
1+i
1+iq

, q odd(
q
p

)
1+ip

1+i
1+iq

1−i
, p odd

) in the case c odd d even for in this cases it becomes a sum over |c|th roots of unity. The c odd and d
even case follows from Θ3(−1/τ) =

√
−iτΘ3(τ). The second part of (2) can be obtained by completing

the square in the sum
∑|c|

n=1

(
ζn2c + ζ−n

2c

)
ζ−dn2

2c , but here will use the easy identity

Θ3(τ + 1) = 2Θ3(4τ)−Θ3(τ).

to give an alternate derivation. First, we need to obtain the next term in the expansion of Θ3

(
it− d

c

)
for

c odd and d even. In this cases find integers a and b so that ad−bc = 1 and a is even. The transformation
formula for Θ3 is

Θ3(τ) =
ϵ√

−i(cτ + d)
Θ3

(
aτ + b

cτ + d

)
,

where ϵ is some 8th root of unity. Setting τ = it− d/c in this formula produces

Θ3

(
−d
c

+ it

)
=

ϵ√
ct
Θ3

(
a

c
+

i

c2t

)
=

ϵ√
ct

(
1 + 2e

( a
2c

)
e−

π
c2t + · · ·

)
=
T (d, c)√
|c|t

(
1 + 2e

(
(2d)−1

mod c

c

)
e−

π
c2t + · · ·

)
.
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Now let c and d both be odd. Setting τ = −c−d
c

+ it in the identity produces

Θ3

(
−d
c
+ it

)
= 2Θ3

(
−4c− 4d

c
+ 4it

)
−Θ3

(
−c− d
c

+ it

)
= 2

T (4d+ 4c, c)√
4|c|t

(
1 + 2e

(
(8d+ 8c)−1

mod c

c

)
e−

π
4c2t + · · ·

)
− T (d+ c, c)√

|c|t

(
1 + 2e

(
(2d+ 2c)−1

mod c

c

)
e−

π
c2t + · · ·

)
=
T (d+ c, c)√

|c|t
e

(
(8d)−1

mod c

c

)
2e−

π
4c2t + · · · ,

which gives the second part of (2). Parts (3) and (4) follow from the identities

Θ4(τ + 1) = Θ3(τ),

Θ2(−1/τ) =
√
−iτΘ4(τ).

Care has been taken to ensure that the formulas are valid for negative c as well.

2.10 Addition Formulas

Theorem 2.10.1 (Weierstrass). A meromorphic function f : C → C possesses an algebraic addition
theorem, that is, a non-trivial relation of the form

P (f(x), f(y), f(x+ y)) = 0,

for some polynomial P with coefficients independent of x and y if and only if f(z) is one of the three
possibilities:

1. rational function of z

2. rational function of e(z/ω) for some period ω

3. rational function of ℘(z|ω1, ω2) and ℘
′(z|ω1, ω2) for some periods ω1, ω2

The third part of this theorem is usually stated with “an elliptic function of z modulo Zω1 + Zω2”.
These are equivalent because any elliptic function is a rational function of ℘(z) and ℘′(z). First suppose
that f(z) is an even elliptic function with zeros ±qn, ...,±qn and poles ±pn, ...,±qn. Then, there must be
a constant c such that

f(z) = c

n∏
i=1

℘(z)− ℘(qi)
℘(z)− ℘(pi)

,

and so f(z) is a rational function of ℘(z). Next, for an elliptic function that is not necessarily even, use

f(z) =
f(z) + f(−z)

2
+ ℘′(z) · f(z)− f(−z)

2℘′(z)
,

where f(z)+f(−z)
2

and f(z)−f(−z)
2℘′(z)

are even elliptic functions.

Proposition 2.10.2.
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1. The map z → (℘(z|ω1, ω2), ℘
′(z|ω1, ω2)) defines a bijection between the points of C/(ω1Z + ω2Z)

and the points on the curve y2 = 4x3 − g2x− g3 (with ∞ included).

2. For any g2, g3 ∈ C such that g32 − 27g2 ̸= 0, the system

g2 = 40G4(ω1, ω2)

g3 = 140G6(ω1, ω2)

is solvable for some periods ω1, ω2.

3. If u+ v +w ≡ 0 mod ω1Z+ ω2Z, then (℘(u), ℘′(u)), (℘(v), ℘′(v)), and (℘(w), ℘′(w)) are colinear,
that is

det

 1 ℘(u) ℘′(u)
1 ℘(v) ℘′(v)
1 ℘(w) ℘′(w)

 = 0

4. Explicit addition formula for ℘(z):

℘(u+ v) = ℘(u) + ℘(v) +
1

4

(
℘′(u)− ℘′(v)

℘(u)− ℘(v)

)2

.

Proof. (4) is left as an exercise. (2) will be established later when it is shown that j(τ) is a univalent
function H/Γ(1)→ C.

For (1), suppose that (℘(z1), ℘
′(z1)) = (℘(z2), ℘

′(z2)). Since ℘(z) is an elliptic function of order 2,
we must have z1 + z2 ≡ 0. This implies that ℘′(z1) = ℘′(−z2) = −℘′(z2) = −℘′(z1) which means that
℘′(z1) = 0 and ℘′(z2) = 0. If it were true that z1 ̸≡ z2 this would mean that the function f(z) =
℘(z) − ℘(z1) would have at least double zeros at the two distinct locations z1 and z2. This contradicts
the fact the f(z) has order 2.

For (3), determine the line l(x, y) = 0 through the points (℘(u), ℘′(u)) and (℘(v), ℘′(v)). Assume
that this line is not vertical, so l(x, y) = A + Bx + y for some constants A and B. The elliptic function
l(℘(z), ℘′(z)) has order 3 in this case so its zeros u, v and w1, say, satisfy u + v + w1 ≡ 0. This implies
that w1 ≡ w, so the assertion follows. If line is vertical, then it follows that u + v ≡ 0, and so w ≡ 0,
which is consistent with the third point (℘(w), ℘′(w)) being located at ∞.

2.11 Γ(3) and the Asymptotic of η Near the Cusps

The η function vanishes at every cusp and is modular with respect to Γ(1). It turns out that there is
quite a magical formula for the asymptotics near the cusps. We simply state this first and devote this
section to understanding this formula.

Proposition 2.11.1. Let c and d be any integers with (c, d) = 1 and c ̸= 0. Then, as t→ 0+,

√
ict e

π
12c2t η

(
−d
c
+ it

)
∼ 1√
−3ic

|c|∑
n=0

(−1)n
(
ζ
−2(6n−1)
24c + ζ

2(6n−1)
24c

)
ζ
−d(6n−1)2

24c

= ζ
d+(c2−1)(d2−1)d−1

mod c
24c ×

{(
c
d

)
ζ15+9d+cd
24 , d odd(

d
|c|

)
ζ3c−2cd
24 , c odd

24



Proof. Let us first check that the final expression on the right hand side is well-defined. This entails
showing that (c2 − 1)(d2 − 1) ≡ 0 mod 24, which is indeed true for relatively prime integers c and d. As
a consequence of the Jacobi’s triple product identity, we have the representation

η(τ) = q1/24(q, q3)∞(q2, q3)∞(q3, q3)∞ =
∑
m∈Z

(−1)me
(
(6m− 1)2τ

24

)
,

hence the representation as a sum over roots of unity follows along the same lines as the calculations in
Proposition 2.9.1. The explicit evaluation will be deduced below.

Since the exponential sum in Proposition 2.11.1 seems difficult to evaluate directly, we will use an
indirect approach based properties of the modular group. Recall that we have the subgroup of Γ(1) given
by

Γ(2) = {M ∈ Γ(1)|M ≡ I mod 2}.

We had Γ(1)/Γ(2) ≃ S3 with the elements of the quotient realized as the six permutations of the three
functions Θ2(τ)

8, Θ3(τ)
8 and Θ4(τ)

8. We can also define

Γ(3) = {M ∈ Γ(1)|M ≡ I mod 3}.

The full modular group Γ(1) acts on the four functions

f∞(τ) = 312η(3τ)24, f0(τ) = η
(τ
3

)24
, f1(τ) = η

(
τ + 1

3

)24

, f2(τ) = η

(
τ + 2

3

)24

by permuting them according to A4 since the two permutations

f∞(−1/τ) = τ 12f0(τ), f∞(τ + 1)= f∞(τ),

f0(−1/τ) = τ 12f∞(τ), f0(τ + 1) = f1(τ),

f1(−1/τ) = τ 12f2(τ), f1(τ + 1) = f2(τ),

f2(−1/τ) = τ 12f1(τ), f2(τ + 1) = f0(τ)

generate all of A4. It is not hard to show that the kernel of this homomorphism Γ(1) → A4 is exactly
±Γ(3). Suppose f∞ and f0 are fixed by some ( a b

c d ) ∈ Γ(1). Thse two conditions are equivalent to(
3 0
0 1

)(
a b
c d

)(
3 0
0 1

)−1

=

(
a 3b
c/3 d

)
∈ Γ(1),(

1 0
0 3

)(
a b
c d

)(
1 0
0 3

)−1

=

(
a b/3
3c d

)
∈ Γ(1).

Therefore, we must have b ≡ c ≡ 0 mod 3, which is exactly the defining congruences for ±Γ(3). Now,
any permutation in A4 that fixes f∞ and f0 necessarily fixes f1 and f2, so we have shown that the kernel
is exactly ±Γ(3).

Since S3 has a normal subgroup whose factor group is Z2, there is a group Γ2 with Γ(1)/Γ2 ≃ Z2.
Similarly, A4 has a normal subgroup (Z2 × Z2) whose factor group is Z3, so there is a group Γ3 with
Γ(1)/Γ3 ≃ Z3. In summary,

Γ(2) ⊴ Γ2 ⊴ Γ(1) with Γ(1)/Γ2 ≃ Z2,

±Γ(3) ⊴ Γ3 ⊴ Γ(1) with Γ(1)/Γ3 ≃ Z3.
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For a given subgroup Γ of SL2(Z), let Γ̄ denote Γ/± I, that is, the equivalent classes of matrices up
to sign. Sometimes, if we are very careful, we will denote these elements with a bar over them. Note that

Γ̄(1)/Γ̄(2) ≃ S3, Γ̄(1)/Γ̄2≃ Z2,

Γ̄(1)/Γ̄(3) ≃ A4, Γ̄(1)/Γ̄3≃ Z3.

Also, let Gab denote the Abelianization of G, the quotient of G and its commutator subgroup. We
have the following universal property of the Abelianization: if ϕ : G → im(ϕ) is a homomorphism to an
Abelian group, then there is a unique homomorphism h : Gab → im(ϕ) so that the diagram

G Gab

im(ϕ)

ϕ

π

h

commutes. Since Γ̄(1) is generated by S̄ and S̄T̄ and these elements have orders two and three, respec-
tively, it follows that

Γ̄(1)ab ⊂ {S̄i(S̄T̄ )j | i ∈ {0, 1}, j ∈ {0, 1, 2}} ≃ Z6.

Now define π : Γ̄(1)→ Z6 by

π

((
a b
c d

))
=

η
(
aτ+b
cτ+d

)4
(cτ + d)2η(τ)4

,

where we have identified Z6 with the sixth roots of unity. Since π(S̄) = −1 and π(T̄ ) = ζ6, we see that
π is a surjection, and so

Γ̄(1)ab ≃ Z6.

Proposition 2.11.2. The function η(τ)4 is modular in weight 2 with respect to Γ(2) ∩ Γ(3), i.e.

η

(
aτ + b

cτ + d

)4

= (cτ + d)2η (τ)4 , for

(
a b
c d

)
∈ Γ(2) ∩ Γ(3).

Proof. The natural projection map ϕ : Γ(1) → Γ(1)/Γ
2 × Γ(1)/Γ

3
has image Z2 × Z3 ≃ Z6, which is

Abelian. By the universal property of the Abelianization, we have ϕ = h ◦ π, where, in this case, h must

be an isomorphism. Therefore, ker(π) = ker(ϕ) = Γ
2 ∩ Γ

3 ⊂ Γ(2) ∩ Γ(3).

According to Proposition 2.11.2, if we want to find the sixth root of unity ϵ(( a b
c d )) so that

η

(
aτ + b

cτ + d

)4

= ϵ

((
a b
c d

))
(cτ + d)2η (τ)4 , for ( a b

c d ) ∈ Γ(1),

it suffices to find a formula for ϵ(( a b
c d )) that satsifies

η

(
aτ + b

cτ + d

)12

= ϵ

((
a b
c d

))3

(cτ + d)6η (τ)12 , for ( a b
c d ) ∈ Γ(1),

η

(
aτ + b

cτ + d

)8

= ϵ

((
a b
c d

))2

(cτ + d)4η (τ)8 , for ( a b
c d ) ∈ Γ(1).
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for just the finite number of elements in Γ(1)/Γ(2) for the first formula and Γ(1)/± Γ(3) for the second
formula. For Γ(1)/Γ(2), we have,

ϵ

((
1 0
0 1

))3

= 1 ϵ

((
0 1
1 0

))3

= −1,

ϵ

((
1 1
1 0

))3

= 1 ϵ

((
1 0
1 1

))3

= −1,

ϵ

((
0 1
1 1

))3

= 1 ϵ

((
1 1
0 1

))3

= −1.

(2.11.1)

For Γ(1)/± Γ(3), we have

ϵ

(
±
(

1 0
0 1

))2

= ζ03 ϵ

(
±
(

0 1
2 2

))2

= ζ13 ϵ

(
±
(

0 1
2 1

))2

= ζ23 ,

ϵ

(
±
(

0 1
2 0

))2

= ζ03 ϵ

(
±
(

1 0
2 1

))2

= ζ13 ϵ

(
±
(

1 0
1 1

))2

= ζ23 ,

ϵ

(
±
(

1 1
1 2

))2

= ζ03 ϵ

(
±
(

1 1
0 1

))2

= ζ13 ϵ

(
±
(

1 1
2 0

))2

= ζ23 ,

ϵ

(
±
(

1 2
2 2

))2

= ζ03 ϵ

(
±
(

1 2
1 0

))2

= ζ13 ϵ

(
±
(

1 2
0 1

))2

= ζ23 .

(2.11.2)

In order to complete these calculations, we write each matrix in SL2(Z/2Z) (resp. SL2(Z/3Z)) as a word
in S and T modulo 2 (resp. 3) and apply the homomorphism (T 7→ ζ2, S 7→ ζ2) (resp. (T 7→ ζ3, S 7→ 1)).
Noticing that 1 − c2 is congruent to 0 mod 2 (resp. 3) only when c is not congruent to 0 mod 2 (resp.
3), we split the evaluations into the two cases c ≡ 0 mod 2 (resp. 3) and c ̸≡ 0 mod 2 (resp. 3). By
inspection of (2.11.1) and (2.11.2), we see that

ϵ

((
a b
c d

))3

=

{
ζbd2 , c ≡ 0 mod 2

ζa+d+1
2 , c ̸≡ 0 mod 2

,

ϵ

(
±
(
a b
c d

))2

=

{
ζbd3 , c ≡ 0 mod 3

ζ
(a+d)c
3 , c ̸≡ 0 mod 3

.

Therefore, we have

ϵ

((
a b
c d

))3

= ζ
bd(1−c2)+(a+d+1)c
2 ,

ϵ

((
a b
c d

))2

= ζ
bd(1−c2)+(a+d)c
3 ,

and so,

ϵ

((
a b
c d

))
= ϵ6

((
a b
c d

))3

/ϵ6

((
a b
c d

))2

= ζ
bd(1−c2)+(a+d+3)c
6 .

Finally, setting τ = it− d/c in the transformation formula

η

(
aτ + b

cτ + d

)4

= ζ
bd(1−c2)+(a+d+3)c
6 (cτ + d)2η (τ)4 ,
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and keeping in mind that ad− bc = 1, we derive

(ict)2 e
π

3c2t η

(
−d
c

+ it

)4

∼ e

(
−ac

6
+

a

6c
+
bc2d

6
− bd

6
− cd

6
− c

2

)
.

In order to determine the correct fourth root, we need a formula for an odd power of the η function.
Fortunately, the relation

η(τ)3 =
1

2
Θ2(τ)Θ3(τ)Θ4(τ) (2.11.3)

is a consequence of Jacobi’s triple product identity (see Exercise 2.12.4). Let us now assume that c is
odd and apply the asymptotic for the Θ functions derived in Section 2.9. These formulas give

(ict)3/2 e
π

4c2t η

(
it− d

c

)3

∼


(

d
|c|

)
ζ
(8d)−1

mod c
c ζ5c+2d+cd+2

8 , d odd(
d
|c|

)
ζ
(8d)−1

mod c
c ζ3c−2d+cd

8 , d even

=

(
d

|c|

)
ζ
(8d)−1

mod c
c ζ

c(3−d)
8 ,

=

(
d

|c|

)
e

(
a(1− c2)

8c
− cd

8
+

3c

8

)
,

where we have cleverly combined the two cases into one that holds for all d and used the elementary
observation that

(8d)−1
mod c

c
≡ (1− c2)a

8c
mod 1

for odd c (recall that ad − bc = 1 so a = d−1
mod c). Also, this is well-defined because c2 − 1 ≡ 0 mod 8.

Finally, since c2 − 1 ≡ 0 mod 8,

√
ict e

π
12c2t η

(
−d
c

+ it

)
= e

(
c− bd(c2 − 1)

8

)
(ict)2 e

π
3c2t η

(
it− d

c

)4
(ict)3/2 e

π
4c2t η

(
it− d

c

)3
∼
(
d

|c|

)
e

(
−ac
24

+
a

24c
+
bc2d

24
− bd

24
− cd

24
+
c

8

)
.

After eliminating b via ad−bc = 1 and replacing a by d−1
mod c, this becomes the assertion of the proposition

for c odd. The case d odd can be dealt with similarly, but we can also use η(−1/τ) =
√
−iτη(τ), and,

when relating d−1
c to c−1

d , we can use

d−1
c

c
+
c−1
d

d
≡ 1

cd
mod 1.

2.12 Exercises

Exercise 2.12.1. Prove part (4) of Proposition 2.10.2. You will have to actually work out the third
intersection point of a line with the curve y2 = 4x3 − g2x− g3.

Exercise 2.12.2. Prove all parts of Proposition 2.4.1

Exercise 2.12.3 (Lipschitz summation formula). For integers k ≥ 1, show

1

ζ(2k)

∞∑
n=−∞

1

(z + n)2k
=

2

ζ(1− 2k)

∞∑
j=1

j2k−1qjz.

28



You might need the functional equation for ζ in the form

2

ζ(1− 2k)
=

(2πi)2k

(2k − 1)!

1

ζ(2k)
.

Exercise 2.12.4. Via Jacobi’s triple product identity, show that

Θ2(0|τ) = 2
η(2τ)2

η(τ)
= 2q1/8 + · · · ,

Θ3(0|τ) =
η(τ)5

η(2τ)2η(τ/2)2
= 1 + 2q1/2 + · · · ,

Θ4(0|τ) =
η(τ/2)2

η(τ)
= 1− 2q1/2 + · · · .

Exercise 2.12.5. This exercise deals with the theta subgroup

Γϑ =

{(
a b
c d

)
∈ Γ(1) | ab ≡ cd ≡ 0 mod 2

}
.

1. Show that S and T 2 generate Γϑ/ ± I. Possible hint: first show that every rational number is
Γϑ-equivalent to either 1(= 1/1) or i∞(= 1/0) and deduce a fundamental domain that has 3 =
[Γ(1) : Γϑ] translates of the fundamental domain for Γ(1).

2. Deduce that the multiplier system for Θ3 satisfies

Θ3

(
0
∣∣∣aτ + b

cτ + d

)
= Θ3(0|τ)×

{(
d
c

)
e
(
1−c
8

)√
−i(cτ + d) , c odd(

c
d

)
e
(
d−1
8

)√
cτ + d , d odd

for any ( a b
c d ) ∈ Γϑ. Hint: Let τ = it− d/c and use the asymptotics at the cusps and be careful with

the branches of the square root: −π/2 < Arg(
√
z) ≤ π/2 and the properties of the Jacobi symbol.

Exercise 2.12.6. Show that for any ( a b
c d ) ∈ Γ(1)

η

(
aτ + b

cτ + d

)
=
√
−i(cτ + d)η(τ)×

{(
d
c

)
ζ
3(1−c)+c(a+d)+bd(1−c2)
24 , c odd(

c
|d|

)
ζ
3d+d(b−c)+ac(1−d2)
24 , d odd

.

Exercise 2.12.7. Investigate

log |Θ3

(
it+ 1+

√
5

2

)
|

log(t)

as t→ 0+.

Exercise 2.12.8. The Weierstrass σ function for the lattice Λ = Zτ +Z is the entire function defined as

σ(z|τ) = z
∏
ω∈Λ′

(
1− z

ω

)
e

z
ω
+ z2

2ω2 .

The product is absolutely convergent. For ( a b
c d ) ∈ Γ(1) and integers A,B with ω = Aτ +B, show that

℘(z|τ) = − ∂2

∂z2
σ(z|τ)

σ(z|τ) = −e
π2

6
E2(τ)z2

2πη(τ)3
Θ1(z|τ)

σ

(
z

cτ + d

∣∣∣aτ + b

cτ + d

)
= (cτ + d)−1σ(z|τ)

σ(z + ω|τ)
σ(z|τ)

= (−1)A+B+ABe

(
−(6A+ πiE2(τ)ω)(2z + ω)

12

)
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Exercise 2.12.9. Use Proposition 2.7.1 to get

E8 = E2
4

E10 = E4E6
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Chapter 3

Theory of Modular Forms on SL2(Z)

3.1 Definition of a Modular Form

Define the slash operator |
( a b
c d

),k
in weight k (an integer) for a matrix ( a b

c d ) with positive determinant as

f |
( a b
c d

),k
(τ) =

(ad− bc)k−1

(cτ + d)k
f

(
aτ + b

cτ + d

)
.

One can easily check that this operation is compatible with matrix multiplication, that is,

f |M1,k|M2,k(τ) = f |M1M2,k(τ).

Here, |M1,k|M2,k means the result of applying |M1,k followed by |M2,k.
Now suppose that f(τ) has period 1 (f |T = f) so that it has a Fourier series expansion in the form

f(τ) =
∞∑

k=−∞

akq
k. (3.1.1)

We say:

1. f(τ) is meromorphic at ∞ if only finitely many negative powers of q appear in (3.1.1).

2. f(τ) is holomorphic at ∞ if only no (strictly) negative powers of q appear in (3.1.1).

3. f(τ) is vanishes at ∞ if only (strictly) powers of q appear in (3.1.1).

Since T ∈ Γ(1), the following definition makes sense.

Definition 3.1.1. Suppose that

f |g,k(τ) = f(τ), for all g ∈ Γ(1) and almost all τ ∈ H.

Define the various spaces Ak, M
!
k, Mk, Sk for any integer k as

1. Automorphic forms of weight k:

Ak(Γ(1)) = {f(τ) | f meromorphic on H and meromorphic at ∞}.

2. Weakly-modular forms of weight k:

M !
k(Γ(1)) = {f(τ) | f holomorphic on H and meromorphic at ∞}.

3. Modular forms of weight k:

Mk(Γ(1)) = {f(τ) | f holomorphic on H and holomorhpic at ∞}.

4. Cusp forms of weight k:

Sk(Γ(1)) = {f(τ) | f holomorphic on H and vanishes at ∞}.

31



3.2 Valence Formula

For any τ0 ∈ H ∪ {∞}, define the order of a meromorphic function as

ordτ0(f) =

{
smallest power of (τ − τ0) in the Laurent series expansion of f at τ0 , τ0 ∈ H
smallest power of q in the q-series expansion of f , τ0 =∞

.

Proposition 3.2.1. If f ∈ Ak(Γ(1)) is not a constant, then

ord∞(f) +
1

2
ordi(f) +

1

3
orde( 1

3
)(f) +

∑
τ∈H/Γ(1)

τ ̸=i,e( 1
3
)

ordτ (f) =
k

12
.

Proposition 3.2.2. If f ∈ Ak(Γ(1)) is not a constant, then

1. k is even

2. Set ζ = e(1
3
) and n = ordζ(f). Then, n ≡ −k/2 mod 3, and f has an expansion in the local variable

at ζ of the form (
τ − ζ̄
ζ − ζ̄

)k

f(τ) =
∞∑
j=0

cj

(
τ − ζ
τ − ζ̄

)n+3j

, c0 ̸= 0.

3. Set ζ = i and n = ordζ(f). Then, n ≡ −k/2 mod 2, and f has an expansion in the local variable
at ζ of the form (

τ − ζ̄
ζ − ζ̄

)k

f(τ) =
∞∑
j=0

cj

(
τ − ζ
τ − ζ̄

)n+2j

, c0 ̸= 0.

Proof. Since −I ∈ Γ(1), (1) follows.
For (2), set ζ = e(1

3
) and t = τ−ζ

τ−ζ̄
. The fact that n ≡ −k/2 mod 3 follows easily from the valence

formula. Next with g(t) defined for |t| < 1 by(
τ − ζ̄
ζ − ζ̄

)k

f(τ) = tng(t)

Note that g(t) is holomorphic at t = 0. One checks that the relation f(−1− 1/τ) = τ kf(τ) is equivlant
to g(ζt) = ζk−ng(t). Since g(0) ̸= 0, this provides another proof of the fact that n ≡ k mod 3. Also, g(t)
has a expansion in non-negative powers of t that are all multiples of 3 since g(ζt) = g(t).

A similar argument establishes (3).

3.3 Dimension Formulas and Generators

Proposition 3.3.1. We have

1. Ak1 ∩ Ak2 = {0} for k1 ̸= k2.

2. Ak1 · Ak2 ⊂ Ak1+k2.

3. M !
0(Γ(1)) = C[j(τ)].

4. A0(Γ(1)) = C(j(τ)).
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5. Sk(Γ(1)) = ∆(τ)Mk−12(Γ(1)).

6. Mk(Γ(1)) =
⊕

4a+6b=k
a,b≥0

CEa
4E

b
6. Also,

∞∑
k=−∞

dimMk(Γ(1))t
k =

1

(1− t4)(1− t6)
=

1 + t4 + t6 + t8 + t10 + t14

(1− t12)2

= 1 + t4 + t6 + t8 + t10 + 2t12 + t14 + 2t16 + 2t18 + 2t20 + · · · .

Proof. (3). By subtracting powers of the j function (j = 1
q
+ · · · ), for any f ∈M !

0(Γ(1)) we can write

f(τ)− P (j(τ)) = O(q)

where P is a polynomial. The valence formula implies that f(τ) − P (j(τ)) vanishes identically because
it is a function of weight 0 without any poles and a zero at ∞.

(4). Given any f(τ) ∈ A0(Γ(1)), we can multiply it by a suitable polynoimal in j(τ) to obtain a
function in M !

0(Γ(1)). By (3), f(τ) must be a rational function of j(τ).
(5). If f(τ) ∈ Sk(Γ(1)) then f(τ)/∆(τ) ∈ Mk−12(Γ(1)) since ∆(τ) has no zeros on H (Proposition

2.4.1) and a simple zero at ∞.
(6). The valence formula implies that dim(Mk(Γ(1))) = 0 for k = 2 or k < 0 (or k odd) and that

dim(M0(Γ(1))) = 1. Suppose that k is even and f(τ) = c+O(q) ∈Mk(Γ(1)). Then,

f(τ) = cEk(τ) + (E4(τ)
3 − E6(τ)

2)g(τ)

where g(τ) ∈Mk−12(τ). Since we have already shown that Ek is a polynomial in E4 and E6, by induction
we obtain that f is of the form

f(τ) =
∑

4a+6b=k
a,b≥0

ca,bE
a
4E

b
6.

This representation is unique because if

0 =
∑

4a+6b=k
a,b≥0

ca,bE
a
4E

b
6

for some k and some choice of ca,b then muliplying by E
−k/4
4 shows that E2

6/E
3
4 is constant, which it is

not.

Proposition 3.3.2. The map τ 7→ j(τ) defines a bijection between H/Γ(1) and C.

Proof. The function j(τ)− c ∈ A0(Γ(1)) has exactly pole (at ∞) so has exactly one zero.

3.4 Applications to Identities

Proposition 3.4.1.
∆(τ) = (2π)12η(τ)24.

Proof. dimS12(Γ(1)) = 1 and the first term in the q-series expansion of ∆ is given in Proposition 2.4.1.
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Proposition 3.4.2. Let fi be a non-constant element of Mki(Γ(1)) for i = 1, 2, 3. Then, there is a
nontrivial algebraic relation of the form

P (f1, f2, f3) = 0,

for some polynomial P .

Proof. Consider the set
Fk =

{
fa
1 f

b
2f

c
3

}
a,b,c≥0

ak1+bk2+ck3=k
.

We have (as k →∞)

|F0|+ |F1|+ · · ·+ |Fk| = |{(a, b, c) ∈ Z3
≥0 | ak1 + bk2 + ck3 ≤ k}|

∼ 1

3!

k3

k1k2k3
.

If f1, f2, f3 were algebraically independent, Fk would be a set of linearly independent elements of Mk for
any k. Therefore, |Fk| ≤ dimMk and

|F0|+ |F1|+ · · ·+ |Fk| ≤ dimM0 + dimM1 + · · ·+ dimMk

∼ 1

2!

k2

4 · 6
,

which is a contradition for large k.

One should note that Propostion 3.4.2 applies not only to Γ(1) but to any finite index subgroup Γ of
Γ(1), as later we will show that

dimMk(Γ) ∼
k

12
[Γ(1) : Γ],

where this formula is restricted to even k when −I ∈ Γ.

Proposition 3.4.3. The three Θ constants Θ2(τ),Θ3(τ),Θ4(τ) are algebraically dependent, and

Θ3(τ)
4 = Θ2(τ)

4 +Θ4(τ)
4.

Proof. We can obtain the algebraic dependence from Propostion 3.4.2 with fi = Θ8i
2 +Θ8i

3 +Θ8i
4 . In order

to actually obtain the relation, we compute that

2E4 = Θ8
2 +Θ8

3 +Θ8
4,

2E2
4 = Θ16

2 +Θ16
3 +Θ16

4 ,

E2
4 = Θ8

2Θ
8
3 +Θ8

3Θ
8
4 +Θ8

4Θ
8
2,

28η24 = Θ8
2Θ

8
3Θ

8
4,

since M4, M8 and S12 are all one-dimensional. Therefore,

0 = Θ16
2 +Θ16

3 +Θ16
4 − 2

(
Θ8

2Θ
8
3 +Θ8

4Θ
8
3 +Θ8

2Θ
8
4

)
=
(
Θ4

2 −Θ4
3 −Θ4

4

) (
Θ4

2 +Θ4
3 −Θ4

4

) (
Θ4

2 −Θ4
3 +Θ4

4

) (
Θ4

2 +Θ4
3 +Θ4

4

)
.

By examining the q-series expansions, we see that it must be the third term that vanishes identically.

We will frequently use Ramanujan’s differential operator θ defined by

θf(τ) =
1

2πi

d

dτ
f(τ) = q

d

dq
f(τ).
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Lemma 3.4.4. The operator

f(τ) 7→ θf(τ)− k

12
E2(τ)f(τ)

maps Mk(Γ(1)) to Mk+2(Γ(1)) (and Ak(Γ(1)) to Ak+2(Γ(1))).

Proof. Exercise.

Proposition 3.4.5.

θj(τ) = −E6(τ)

E4(τ)
j(τ).

Proof. Exercise.

3.5 Exercises

Exercise 3.5.1. Show that

f(τ) 7→ θf(τ)− k

12
E2(τ)f(τ)

maps Ak → Ak+2, Mk →Mk+2, and Sk → Sk+2.

Exercise 3.5.2. Show that

θj(τ) = −E6(τ)

E4(τ)
j(τ).

Hint: j = E3
4/η

24 and M14(Γ(1)) = CE2
4E6.

Exercise 3.5.3. Express j(τ) as a rational function of the elliptic λ function, which is defined by

λ(τ) =
Θ2(τ)

4

Θ3(τ)4
= 1− Θ4(τ)

4

Θ3(τ)4
.

Exercise 3.5.4. Show that E4(
−1+

√
−3

2
) = 0 and E6(

√
−1) = 0 and deduce the following values of the j

function at quadratic irrationals:

j(−1+
√
−3

2
) = 0,

j(
√
−1) = 123.
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Chapter 4

Theory of Modular Forms on Congruence
Subgroups of SL2(Z)

In this chapter several ways of building modular forms on conruence subgroups of Γ(1) are presented.
Although there certainly are other methods, we will contruct functions by means of

� Klein forms and Eisenstein series. These turn out to be specializations of the functions σ(z) and
ζ(z), ℘(z), ℘′(z), ℘′′(z), . . . functions to points z ∈ 1

N
Z + 1

N
Zτ . These produce modular functions

and forms on Γ(N).

� Θ functions from any positive definite qudratic form. If the quadratic form takes values in the even
integers and its dual takes values in 1

N
Z, then the resulting Θ function is modular with respect to

Γ0(N).

� The η function q−1/24
∏∞

n=1(1− qn) can be generalized, leading to a function that is invariant under
a subgroup of Γ0(N) of index 2.

Using the theory developed in this chapter, many identities involving these functions can be easily ob-
tained.

4.1 Definition of modular forms on Γ with [Γ(1) : Γ] <∞
Extend the action of SL2(Z) to include Q ∪ {∞} by setting(

a b
c d

)(
p

q

)
=
ap+ bq

cp+ dq
,(

a b
c d

)(
−d
c

)
=∞,(

a b
c d

)
(∞) =

a

c
.

We will also set H = H ∪Q ∪ {∞}.
We need to make sense of the order of vanishing of a function on the quotient H/Γ

Definition 4.1.1. Let [Γ(1) : Γ] < ∞ and let f be a non-constant function such that f |M,k = f for all
M ∈ Γ. We define the invariant order of the function f at a point τ0 ∈ H with respect to Γ as follows.
(Note: cn ̸= 0.)
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1. For any τ0 ∈ H,

ordτ0(f,Γ) =
n

|Γτ0|
where f =

∑
m≥n

cm(τ − τ0)m.

Points where |Γτ0| = 2 are called elliptic points of order two, and these only occur at points in
Γ(1)(i). The size of the Γ-equivalence class of elliptic points of order two is denoted by ϵ2.

Points where |Γτ0| = 3 are called elliptic points of order three, and these only occur at points in
Γ(1)(e(1

3
)). The size of the Γ-equivalence class of elliptic points of order three is denoted by ϵ3.

2. For τ0 ∈ Q, let α ∈ Γ(1) be such that τ0 = α(∞), and let h ∈ Z>0, the width of the cusp τ0, be
defined by

(α−1Γα)∞ =
〈
( 1 h
0 1 )

〉
.

Then,

ordτ0(f,Γ) =


n if (α−1Γα)∞ = ±⟨( 1 h

0 1 )⟩ and f |α =
∑

m≥n cmq
m
h

n if (α−1Γα)∞ = ⟨+( 1 h
0 1 )⟩ and f |α =

∑
m≥n cmq

m
h

n if (α−1Γα)∞ = ⟨−( 1 h
0 1 )⟩ and f |α =

∑
m≥n cmq

m
h and k even

n
2

if (α−1Γα)∞ = ⟨−( 1 h
0 1 )⟩ and f |α =

∑
m≥n cmq

m
2h and k odd

These points are called cusps. The size of the Γ-equivalence class of cusps is denoted by ϵ∞. When
the last condition is satisfied, the cusp is called irregular, otherwise it is called regular, the sizes of
the Γ-equivalence classes of theses sets are denoted by ϵirr∞ and ϵreg∞ .

Definition 4.1.2. If [Γ(1) : Γ] <∞ and α ∈ Q, let hΓ(α) be the width of the cusp α for Γ. The level of
Γ is the least common multiple of all cusp widths. That is,

level(Γ) = lcm({hΓ(α)}α∈Q).

Definition 4.1.3. Suppose that f |M,k = f for all M ∈ Γ.

Ak(Γ) = {f | ∀τ∈H ordτ (f,Γ) > −∞ and ∀τ∈Q ordτ (f,Γ) > −∞},
M !

k(Γ) = {f | ∀τ∈H ordτ (f,Γ) ≥ 0 and ∀τ∈Q ordτ (f,Γ) > −∞},
Mk(Γ) = {f | ∀τ∈H ordτ (f,Γ) ≥ 0 and ∀τ∈Q ordτ (f,Γ) ≥ 0},
Sk(Γ) = {f | ∀τ∈H ordτ (f,Γ) ≥ 0 and ∀τ∈Q ordτ (f,Γ) > 0},
Ek(Γ) =Mk(Γ)/Sk(Γ).

For an example of an irregular cusp, take Γ = Γ1(4). The cusp
1
2
is irregular. In this case 1

2
= ( 1 0

2 1 )(∞),
so α = ( 1 0

2 1 ), and

+α

(
1 h
0 1

)
α−1 =

(
+1− 2h +h
−4h +1 + 2h

)
,

−α
(

1 h
0 1

)
α−1 =

(
−1 + 2h −h
+4h −1− 2h

)
.

Thus, we see that (α−1Γ1(4)α)∞ is generated by −( 1 1
0 1 ), which means that 1

2
is an irregular cusp of width

1 for Γ1(4). Furthermore, for the cusp 0 = α(∞) where α = S, the computation

α

(
1 h
0 1

)
α−1 =

(
1 0
−h 1

)
shows that 0

1
is a regular cusp of width 4 for Γ1(4).
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4.2 Dimension formulas

Proposition 4.2.1 (Valence Formula). If f ∈ Ak(Γ) is not constant, then∑
τ∈H/Γ

ordτ (f,Γ) =
k[Γ(1) : Γ]

12
.

Proof. Let d = [Γ(1) : Γ] and let M1, . . . ,Md be a list of representatives of Γ Γ(1). First assume that k
is even and define

g(τ) =
∏
j

f |Mj ,k(τ),

and note that g ∈Mkd(Γ(1)). The valence formula for Γ(1) now reads as

ord∞(g,Γ(1)) +
∑

τ∈H/Γ(1)

ordτ (g,Γ(1)) =
k[Γ(1) : Γ]

12
.

We will deal with the points of finite order first.

ordτ (g) =
i∑

j=1

ordτ (f |Mj
)

=
i∑

j=1

ordMjτ (f)

=
∑

z∈(Γ(1)τ)/Γ

|Γ(1)τ |
|Γz|

ordz(f)

Dividing this equality by |Γ(1)τ | and summing over all τ in the fundamental domain for Γ(1) gives∑
τ∈H/Γ(1)

ordτ (g,Γ(1)) =
∑

τ∈H/Γ(1)

ordτ (g)

|Γ(1)τ |

=
∑

z∈H/Γ

ordτ (g)

|Γτ |

=
∑

z∈H/Γ

ordτ (g,Γ).

For the cusps, we have the easy equality

ord∞(g) =
∑

τ∈Q/Γ

ordτ (f,Γ).

For odd k, we can apply the formula to g2, and using

ordτ (f
2,Γ) = 2 ordτ (f,Γ),

we see that the formula is valid for odd k as well.

Proposition 4.2.2 (Genus Formula).

g = 1 +
[Γ(1) : Γ]

12
− ϵ2

4
− ϵ3

3
− ϵ∞

2
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Proof. Set d = [Γ(1) : Γ]. Define f : H/Γ → H/Γ(1) via the natural projection to the fundamental
domain for Γ(1). Triangulate the domain for Γ(1) with

|F ′| = 2

|E ′| = 3

|V ′| = 3

with a vertex at i, e(1
3
) and∞. Pull back this trangulation via f−1. For the triangulation of a fundamental

domain for Γ, we have

|F | = 2d

|E| = 3d

|V | = ϵ∞ + d−
∑

z∈f−1(i)

{
0, if z is an elliptic point of order 2

1, if z is not an elliptic point of order 2

+ d−
∑

z∈f−1(e(
1
3
))

{
0, if z is an elliptic point of order 2

2, if z is not an elliptic point of order 3
.

Therefore, |V | = ϵ∞ + d− 1
2
(d− ϵ2) + d− 2

3
(d− ϵ3) and the formula for the genus follows from 2− 2g =

|F | − |E|+ |V |.

We next simply quote the dimension formulas from [6, Ch. 3], as the derivation requires the Riemann-
Roch Theorem from the theory of Riemann surfaces. If we need the dimension of any specific one of
these spaces in the future, hopefully we can give a self-contained argument.

Theorem 4.2.3. We have

1. Dimension formulas for k even:

dimMk(Γ) =


(k − 1)(g − 1) + ⌊k

4
⌋ϵ2 + ⌊k3⌋ϵ3 +

k
2
ϵ∞ , k ≥ 2

1 , k = 0

0 , k < 0

,

dimSk(Γ) =


(k − 1)(g − 1) + ⌊k

4
⌋ϵ2 + ⌊k3⌋ϵ3 +

(
k
2
− 1
)
ϵ∞ , k ≥ 4

g , k = 2

0 , k ≤ 0

,

dimEk(Γ) =


ϵ∞ , k ≥ 4

ϵ∞ − 1 , k = 2

1 , k = 0

0 , k < 0

.
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2. Dimension formulas for k odd and −I ̸∈ Γ (ϵ2 = 0 in this case):

dimMk(Γ) =


(k − 1)(g − 1) + ⌊k

4
⌋ϵ2 + ⌊k3⌋ϵ3 +

k
2
ϵreg∞ + k−1

2
ϵirr∞ , k ≥ 3

≥ 1
2
ϵreg∞ (equality if ϵreg∞ > 2g − 2) , k = 1

0 , k < 0

,

dimSk(Γ) =


(k − 1)(g − 1) + ⌊k

4
⌋ϵ2 + ⌊k3⌋ϵ3 +

k−2
2
ϵreg∞ + k−1

2
ϵirr∞ , k ≥ 3

dimM1(Γ)− 1
2
ϵreg∞ , k = 1

0 , k < 0

,

dimEk(Γ) =


ϵreg∞ , k ≥ 3
1
2
ϵreg∞ , k = 1

0 , k < 0

.

4.3 Counting ϵi for Γ(N) and Γ1(N) and Γ0(N)

Set

Γ(N) = {M ∈ Γ(1) |M ≡ ( 1 0
0 1 ) mod N},

Γ1(N) = {M ∈ Γ(1) |M ≡ ( 1 ∗
0 1 ) mod N},

Γ0(N) = {M ∈ Γ(1) |M ≡ ( ∗ ∗
0 ∗ ) mod N}.

Proposition 4.3.1. For Γ(N), we have

1. [Γ(1) : Γ(N)] = | SL2(Z/NZ)| = N3
∏

p|N

(
1− 1

p2

)
.

[Γ(1) : Γ(N)] =

{
1
2
N3
∏

p|N

(
1− 1

p2

)
, N ≥ 3

6 , N = 2
.

2. Two cusps a1/c1 and a2/c2 (gcd(ai, ci) = 1) of Γ(N) are equivalent when.

(a1, c1) ≡ ±(a2, c2) mod (Z/NZ)2.

The total number of cusps is

ϵ∞ =

{
1
2
N2
∏

p|N

(
1− 1

p2

)
, N ≥ 3

3 , N = 2
.

3. There are no elliptic points.
ϵ2 = ϵ3 = 0.

Proposition 4.3.2. For Γ1(N), we have

1. [Γ1(N) : Γ(N)] = N .

[Γ(1) : Γ1(N)] = N2
∏
p|N

(
1− 1

p2

)
.
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2. The number of cusps is given by

ϵ∞ =


1
2

∑
d|N ϕ(d)ϕ(N/d) , N > 4

3 , N = 4

2 , N = 2, 3

.

3. The number of elliptic points of order 2 is given by

ϵ2 =

{
1 , N = 2

0 , N ̸= 2
.

4. The number of elliptic points of order 3 is given by

ϵ3 =

{
1 , N = 3

0 , N ̸= 2
.

Proposition 4.3.3. For Γ0(N), we have

1. [Γ0(N) : Γ1(N)] = ϕ(N).

[Γ(1) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)
.

2. The cusps are enumerated by a
c
with gcd(a, c) = 1 and c|N and where the a’s are chosen in the

interval 1 ≤ a ≤ c to be inequivalent modulo gcd(c,N/c). Since for d|c the reduction map (Z/cZ)∗ →
(Z/dZ)∗ surjects, the number of choices for a is ϕ(gcd(c,N/c)). The number of cusps is

ϵ∞ =
∑
c|N

ϕ(gcd(c,N/c)).

The width of the cusps with denominator c is N/(c gcd(c,N/c)).

3. The elliptic points of order 2 are enumerated by ( 0 −1
1 k )(i) where k (taken modulo N) ranges over

the solutions to k2 + 1 = 0 mod N .

ϵ2 =

{∏
p|N

(
1 +

(
−1
p

))
, 4 ∤ N

0 , 4 | N
.

4. The elliptic points of order 3 are enumerated by ( 0 −1
1 k )(e(1

6
)) where k (taken modulo N) ranges over

the solutions to k2 + k + 1 = 0 mod N .

ϵ3 =

{∏
p|N

(
1 +

(
−3
p

))
, 9 ∤ N

0 , 9 | N
.

Proof. We will show (1) and (2) just for prime N = p. The full discussion for any N can be found in [6,
Ch. 3]. Since (

a b
c d

)(
1

0

)
=
a

c
,(

a b
c d

)(
0

1

)
=
b

d
,
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any rational number with denominator divisible by p is equivalent to 1
0
while the other rational numbers

are equivalent to 0
1
. Thus, since 0

1
has width p and 1

0
has width 1,

[Γ(1) : Γ0(p)] = p+ 1.

(3). Let us first show that, with g = ( a b
c d ) ∈ Γ(1), the points g(i) with non-trivial stabilizers in Γ0(N)

are all Γ0(N)-equivalent to Mk(i) with Mk = ( 0 −1
1 k ). We can compute that

gSg−1 =

(
ac+ bd −a2 − b2
c2 + d2 −ac− bd

)
,

so any g(i) with non-trivial stabilizer in Γ0(N) must have c2+d2 ≡ 0 mod N . Since c and d are relatively
prime, this means that c and N are also relatively prime. Now,(

a b
c d

)
=

(
ak − b a
ck − d c

)(
0 −1
1 k

)
.

Since c and N are relatively prime, we can find an integer k so that ck − d ≡ 0 mod N , thus showing
that g(i) and Mk(i) are Γ0(N)-equivalent.

IfMk(i) has a non-trivial stabilizer in Γ0(N), we need k2+1 ≡ 0 mod N . Let us show that when k is as
such and is taken modulo N , these points are inequivalent under Γ0(N). Suppose that Mk1(i) = hMk2(i)
for some h ∈ Γ0(N) with k21 + 1 ≡ k22 + 1 ≡ 0 mod N . This means that Mk1S

iM−1
k2
∈ Γ0(N) for i = 0 or

1. As

Mk1S
0M−1

k2
=

(
1 0

k2 − k1 1

)
,

Mk1S
1M−1

k2
=

(
−k2 −1

k1k2 + 1 k1

)
,

we see that k1 ≡ k2 mod N since k1k2 ≡ −1 mod N is equivalent to k1 ≡ k2 mod N because k22 ≡
−1 mod N .

4.4 General properties of Ak(Γ)

The proof of the follow proposition follows exactly along the same lines as the proof of Proposition 3.2.2.

Proposition 4.4.1. Suppose k is even and f ∈ Ak(Γ).

1. If ζ is an elliptic point of order 2 then

k

2
+ 2 ordζ(f,Γ) ≡ 0 mod 2.

2. If ζ is an elliptic point of order 3 then

k

2
+ 3 ordζ(f,Γ) ≡ 0 mod 3.

It follows that for functions in A0(Γ) the order should be measured in the variable

t =

{(
τ−z
τ−z

)|Γz |
, z ∈ H

exp 2πi
h
α−1(τ) , z = α(∞), h is cusp width

,
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called the local variable at z ∈ H, and all function will have expansions in integral powers of this variable.
In the case of the cusp ∞, this variable is also q1/h.

As with elliptic functions, we usually refer to the number of poles of a function as its order, but
according to the following definition this number is also the number of times the function takes any
complex value.

Definition 4.4.2. If f ∈ A0(Γ) then the number of solution to f(τ) = c counted according to multiplicity
for any c ∈ C∞ is independent of c and is called the order of the function f , also denoted by ordΓ(f).

Proof. The number of zeros of f(τ) − c is equal to the number of poles of f(τ) by the valence formula,
so ordΓ(f) is well-defined.

Definition 4.4.3. If f ∈ A0(Γ), define the ramification index ramz(f,Γ) ∈ Z>0 by

ramz(f,Γ) =

{
ordz(f − f(z)) , f(z) ̸=∞
− ordz(f) , f(z) =∞

Proposition 4.4.4. If f ∈ A0(Γ) and g is the genus of H/Γ, then∑
z∈H/Γ

(ramz(f,Γ)− 1) = 2(g − 1 + ordΓ(f)).

Proof. The is a special case of the Riemann-Hurwitz Formula where the target space is C∞. It may
be proven exactly as the genus formula was obtained (in fact the genus formula is this with f = j so
that ordΓ(j) = [Γ(1) : Γ]). One triangulates H/Γ with vertices at the finite number of points z where
ramz(f,Γ) > 1.

Proposition 4.4.5. S0(Γ) = {0} and M0(Γ) = C.

Proof. The first assertion follows from the valence formula. For the second, if f(τ) = c+ O(q1/h) where
h is the width of the cusp∞, then f(τ)− c has a zero at∞ and is still an element of M0(Γ). The valence
formula then implies that f(τ) is constant.

Proposition 4.4.6. If R is a rational function of degree d and x ∈ A0(Γ), then

ordΓ(R(x)) = d ordΓ(x).

The function x in the following proposition, if it exists, is called a Hauptmodul for Γ, and all Haupt-
moduln for a given Γ differ by a Möbius transformation.

Proposition 4.4.7. Suppose that x ∈ A0(Γ) with ordΓ(x) = 1.

1. x : H/Γ→ C∞ is a bijection and g = 0.

2. If y is another non-constant function in A0(Γ), then there are polynomials pi(x) such that p0(x) +
p1(x)y = 0. Specifically, there is a constant c such that cy =

∏
z∈H/Γ(x − x(z))ordz(y,Γ) where the

possible term from the pole z of x is omitted.

3. A0(Γ) = C(x).

4. S1(Γ) = S2(Γ) = {0}.
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Proof. (1). x(τ) − c has one pole so it has exactly one zero by the valence formula. The proves that
x defines a bijection. Suppose that g > 0. Then there is a loop on H/Γ that may not be contracted
to a point. However, the image of this loop on C∞ is contractible. This is a contradiction because the
contraction of the loop on C∞ may be pulled back (via x−1) to a contraction on H/Γ.

(2). Define

g(τ) =
1

y(τ)

∏
z∈H/Γ
x(z)̸=∞

(x(τ)− x(z))ordz(y,Γ).

Since x(τ)− x(z) has a simple zero at τ = z (as measured in the local variable at z), for all z = H/Γ we
have ordz(g,Γ) = 0 expect possibly at the unique pole of the function x. However, if z is this pole, the
valence formula implies that ordz(g,Γ) = 0 as well. Thus, g ∈M0(Γ) which consists entirely of constants.

(3) is then a direct consequence of (2).
(4) If f ∈ S2(Γ) then define

g(τ) =
f(τ)

dx/dτ
.

That g(τ) ∈ A0(Γ) is essentially Lemma 3.4.4. Let z ∈ H not be a pole of x and p = |Γz| and let t be
the local variable at z. Let ci denote certain non-zero constants (that could depend on z). Recalling that

x(τ)− x(z) has a simple zero at τ = z, we see that dx = (c1 +O(t))dt. Since dτ = t
1
p
−1(c2 +O(t))dt, we

have

g(τ) =
f(τ)

dx/dτ
= tordz(f,Γ)+

1
p
−1(c3 +O(t)).

Since, by definition of S2(Γ), ordz(f,Γ) ≥ 0, and we have ordz(f,Γ) ≡ 1− 1
p
mod 1 by Proposition 4.4.1,

g(τ) does not have a pole at z. If z is a pole of x then the only thing that needs to be changed in this
discussion is that dx = t−2(c3 +O(t))dt, and so we see that g(τ) has a zero at z in this case.

Next, if z = ( a b
c d )(∞) ∈ Q, let t be the local variable at this cusp z. We have

f(τ) = (a− cτ)2tordz(f,Γ)(c4 +O(t))

dτ = (a− cτ)−2t−1c5dt

dx =

{
(c6 +O(q))dt , z is not a pole of x

t−2(c7 +O(q))dt , z is a pole of x
.

Thus we see that g does not have a pole and actually vanishes at the pole of x. Since g was an element
of A0(Γ), this means that g mush be identically 0. Therefore, S2(Γ) = {0}. The square of any element
of S1(Γ) is in S2(Γ), so S1(Γ) = {0} as well.

Proposition 4.4.8. Suppose that x ∈ A0(Γ) with ordΓ(x) = 2.

1. Any three functions in A0(Γ) are linearly dependent over C(x).

2. If y is a function of odd order, then there is a unique irreducible polynomial P (x, y) of degree 2 in
y with P (x(τ), y(τ)) = 0, and we have A0(Γ) = C(x, y)/(P (x, y)).

Proof. (1). By Proposition 4.4.4 there is a ramification point of the function x because∑
z∈H/Γ

(ramz(x,Γ)− 1) = 2(g + 1) > 0.

Since none of the assertions of the proposition are affected by applying a Möbius transformation to x, if
necessary, we can let z be such a ramification point and replace x by 1/(x− x(z)) to assume that x has
a single double pole at some point z.
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Let L(m) denote the vector space of functions that have poles only at z and the order of this pole is
≤ m. Clearly,

dimL(m) ≤ 1 +m.

Let f1, f2, f3 ∈ A0(Γ) and assume that they are linearly independent over C(x). We can find polynomials
pi(x) so that pi(x)fi has no poles outside z. This means that there is an integer m0 such that, for
i = 1, 2, 3,

pi(x)fi ∈ L(2m0).

For any integer m ≥ m0, the set
{xjpi(x)fi} i=1,2,3

0≤j≤m−m0

consists of 3(m−m0+1) linearly independent functions in L(2m). This contradicts the bound dimL(2m) ≤
1 + 2m for large m and shows that f1, f2, f3 are linearly dependent over C(x).

(2). Let y be a function of odd order. By multiplying by a suitable polynomial in x, we may assume
that y has no poles outside of z and that y has a pole of odd order at z because multiplying by a
polynomial in x changes the order of y by an even integer. Then, it is easy to see that 1 and y are linearly
independent over C(x), for suppose that there were polynomials p0(x) and p1(x) with

p0(x) + p1(x)y = 0.

If p1(x) ̸= 0, then the Laurent series expansion of p0(x) begins with t to a negative even power and
p1(x)y begins with a negative odd power. Thus p1(x) = p0(x) = 0 and 1 and y are linearly independent
over C(x). We can get the quadratic relation by applying (1) to the three functions 1, y, y2. Finally, if
f ∈ A0(Γ), apply (1) to the three functions 1, y, f .

Proposition 4.4.9. If x ∈ A0(Γ) with l = ordΓ(x), then any l + 1 functions in A0(Γ) are linearly
dependent over C(x).

Proof. Suppose x has poles at q1, . . . , qr and that the orders of these poles are n1, . . . , nr. Assume that
there are l+1 functions f1, . . . , fl+1 that are linearly independent over C(x). Let L(m) denote the vector
space of functions that have no poles outside q1, . . . , qr and having a pole of order not worse than mni at
each qi. Clearly, dim(L(m)) ≤ 1 +mn1 + · · · +mnr = 1 +ml. We can find polynomials p1, . . . , pr with
p1(x)f1, . . . , pr(x)fr each having no poles outisde of q1, . . . , qr. Therefore, for some fixed m0, we have
pi(x)fi ∈ L(m0) for every i = 1, . . . , l + 1. It follows that

{xjpi(x)fi} i=1,...,l+1
0≤j≤m−m0

consists of (m − m0 + 1)(l + 1) linearly independent functions in L(m), which contradicts the bound
dim(L(m)) ≤ 1 +ml for large m.

4.5 Working with finite index subgroups of Γ(1)

This section discusses several of the representations of a finite index subgroup, Γ, of Γ(1). The first and
most intuitive way is via the combination of a fundamental domain for Γ and edge-pairing matrices, as
given in the following theorem.

Theorem 4.5.1 (Siegel). If [Γ(1) : Γ] <∞, there is a connected fundamental domain D for Γ in which
the sides of D can be paired up by elements of Γ, and the elements of Γ that the pair up all of the sides
generate Γ.
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Unfortunately, the generators in this theorem are not guaranteed to be independent. For example S
and T pair up the edges in the usual fundamental domain for Γ(1), but S and T are not independent
generators. We will describe the so called Farey symbol for subgroup Γ of Γ(1) of finite index, which
allows a list of independent generators to be easily computed (see [13] and [12]). We will also describe
the bicuboid graph for Γ as well, and find the following correspondences:

1. fundamental domains with side pairings ⇒ subgroups (onto, many-to-one)

2. Farey symbols ⇒ subgroups (onto, many-to-one)

3. bicuboid graphs ⇔ conjugacy classes of subgroups (bijection)

4. marked bicuboid graphs ⇔ subgroups (bijection)

5. marked bicuboid graphs with cuts ⇔ Farey symbols (bijection)

We will first define all of these terms appears in these correspondences.

Definition 4.5.2.

1. Label the following points in H:

(a) An even point is the image of i under some element of Γ(1).

(b) An odd point is the image of e(1
6
) under some element of Γ(1).

(c) An cusp is the image of ∞ under some element of Γ(1).

2. Label the following half arcs in H:

(a) An even edge is the image the set {e(1
4
) + it | t > 0} under some element of Γ(1).

(b) An odd edge is the image the set {e(1
6
) + it | t > 0} under some element of Γ(1).

(c) A free edge is the image the set {e(t) | 1
6
< t < 1

4
} under some element of Γ(1).

3. A special polygon for Γ is a convex hyperbolic polygon P satisfying:

(a) The boundary of P consists of even and odd edges.

(b) The even edges come in pairs, each pair forming an arc connecting two elements of Q. Each
arc is either paired with itself under Γ (in which case it contains an elliptic point of order 2)
or is paired with another such arc under Γ.

(c) The odd edges come in pairs, each pair meeting at a vertex with angle 2π/3, which is an elliptic
point of order 3 for Γ.

Definition 4.5.3.

1. A bipartite cuboid graph (or bicuboid graph) is a finite connected graph such that

(a) Every vertex is marked by either • or ◦. These are called odd and even vertices, respectively.

(b) Every odd vertex has valence 1 or 3.

(c) Every even vertex has valence 1 or 2.

(d) There is a set cyclic order on the edges originating at each vertex of valence three.

(e) Every edge joins an even and odd vertex.
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2. A marked bicuboid graph is a bicuboid graph with a distiguished edge.

Definition 4.5.4. A Farey symbol is a symbol of the form

−1
0
←→
p−1

a0
c0
←→
p0

a1
c1
←→
p1
· · · ←→

pn−1

an
cn
←→
pn

1

0
,

where one of the an
cn

is 0. The pairing symbols pi are allowed to be natural numbers or one of symbols •
or ◦ and we always have ai+1ci − aici+1 = 1.

A natural number n, if it appears among the pi, appears exactly twice at two edges, say, pi and pk. In
this cases, the edges pi and pk are said to the paired by a free pairing.

If pi = ◦, the edge is said to be paired with itself by an even pairing.
If pi = •, the edge is said to be paired with itself by an odd pairing.
Define the pairing matrix for even pairings, odd pairings, and free pairings, respectively, as

Gi

(
ai
ci
←→

◦

ai+1

ci+1

)
=

(
ai+1 ai
ci+1 ci

)(
0 −1
1 0

)(
ai+1 ai
ci+1 ci

)−1

,

Gi

(
ai
ci
←→

•

ai+1

ci+1

)
=

(
ai+1 ai
ci+1 ci

)(
0 −1
1 −1

)(
ai+1 ai
ci+1 ci

)−1

,

Gi,k

(
ai
ci
←→

n

ai+1

ci+1

,
ak
ck
←→

n

ak+1

ck+1

)
=

(
ak+1 ak
ck+1 ck

)(
0 −1
1 0

)(
ai+1 ai
ci+1 ci

)−1

.

In this section will we assume that all matrices are taken modulo ±I since we are concerned with
their action on H and mercifully suppress the lines on the groups. In addition to the matrices S = ( 0 −1

1 0 )
and T = ( 1 1

0 1 ), the matrices

O =

(
1 −1
1 0

)
, R =

(
1 0
1 1

)
will be useful. The main result which is useful for studying subgroups of Γ(1) is the result that Γ(1) =
Z2 ∗ Z3.

Proposition 4.5.5. For Γ(1), the matrices S and O are independent generators of orders 2 and 3, that
is, each element of Γ(1) can be written uniquely as a word in S and O with no two consecutive S’s and
no three consecutive O’s.

Proof. Exercise. Hint: OS = ( 1 1
0 1 ) and OOS = ( 1 0

1 1 ).

Exercise 4.5.6. Show that S and T n generate a subgroup of finite index in Γ(1) only when |n| = 1, 2.
Hint: for n > 3 assume the opposite and consider (OS)mOOSO for large m.

Remark 4.5.7. Let xy′(x)/y(x) = x+ x2 + 4x3 + 8x4 + 5x5 + · · · be the formal generating function for
subgroups of Γ(1) of a given index. It is possible to show ([14]) that y(x) satisfies the differential equation

x7(x3 − 1)y′′(x) + (4x9 + 2x7 − 4x6 − 2x4 − 4x3 + 1)y′(x)

+(2x8 + 2x6 − 4x5 + x4 − 4x3 − 4x2 − x− 1)y(x) = 0.

It is possible to give an explicit algorithm for writing a given M ∈ Γ(1) as a word in S and O. If
M = ( a b

c d ), then the even point M(i) is part of an arc that connects the two cusps a
c
and b

d
. Let M0 be

the matrix we wish to write in terms of S and O. At each step of the following algorithm, a, b, c, and d
denote the entries of Mk.

if Mk = I or S, then terminate

if −∞ ≤ a
c
, b
d
≤ 0, then Mk+1 = SMk

if 0 ≤ a
c
, b
d
≤ 1, then Mk+1 = OMk

if 1 ≤ a
c
, b
d
≤ ∞, then Mk+1 = OOMk
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This will terminate, in which case M−1
0 is expressed as a word in S and O and so M0 is as well. In the

following diagram, H has been mapped into the unit disk, and the free edges E have been marked with
the matrix that sends E to the free edge between i and e(1

6
).

IS

O

OOOS

OOS

SO

SOOSOS

OSO

OSOO

SOOS
OOSO

OSOS

SOSO

Proposition 4.5.8. Let [Γ(1) : Γ] = µ and ϕ denote the homomorphism Γ(1) → Symµ obtained by the
permutation action of g ∈ Γ(1) on the left cosets Γ(1)\Γ.

1. Γ is completely determined by ϕ(S) and ϕ(O) up to a relabeling of the non-trivial cosets as long as
ϕ(S) and ϕ(O) have order 2 and 3, respectively, and generate a transitive subgroup of Symµ.

2. The number of fixed points of ϕ(S) is ϵ2.

3. The number of fixed points of ϕ(O) is ϵ3.

4. The number of cycles in ϕ(T ) is ϵ∞. The lengths of these cycles are the widths of the inequivalent
cusps of Γ.

5. The order of the permutation ϕ(T ) is level(Γ).

As an example of this correspondence, we list the subgroups of Γ of index 3.

Example 4.5.9. For the 4 groups of index 3 in Γ(1), namely Γ3, Γ0(2), Γ0(2), Γϑ the corresponding
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marked bicuboid graph, special polygon and Farey Symbol are shown below.

Γ3 Γ0(2) Γ0(2) Γϑ

X

S = (1)(2)(3)
O = (123)

X

S = (12)(3)
O = (123)

X

S = (13)(2)
O = (123)

X

S = (23)(1)
O = (123)

◦ ◦

◦

0
1

1
1

1 ◦

1

0
1

1
1

1 1

◦

0
1

1
1

◦ 1

1

0
1

1
1

−1
0
↔
◦

0
1
↔
◦

1
1
↔
◦

1
0

−1
0
↔
1

0
1
↔
1

1
1
↔
◦

1
0

−1
0
↔
1

0
1
↔
◦

1
1
↔
1

1
0

−1
0
↔
◦

0
1
↔
1

1
1
↔
1

1
0

Any relabeling of the edges for Γ3 produces isomorphic graphs because Γ3 is a normal subgroup of Γ(1).
The remaining three graphs are distinct because the position of the marked edge, the edge marked “X”,
is distinguished by the orientation on the odd vertex. This marked ege is placed by default along the free
edge from i to e(1

6
) in the special polygon.

From Proposition 4.5.8 we can construct the correspondence between bicuboid graphs and subgroups
Γ of Γ(1), which we illustrate for a group of index 9. Let ϕ : Γ(1)→ Sym9 be defined by

ϕ(O) = (123)(456)(789),

ϕ(S) = (24)(39)(67).

The group Γ is then defined as the set of all g ∈ Γ(1) such that ϕ(g)(1) = 1. This marks “1” as the coset
Γ in Γ(1)\Γ. The corresponding graph (whose ordering on the trivalent vertices is counter-clockwise) is

1

5

8

2

4

3

9

6

7

X
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This bicuboid graph has one edge marked with an “X”, making it into a marked bicuboid graph. Note
that marking any of the other 8 vertices gives rise to a total of only 3 distinct marked graphs, hence there
are two other subgroups of Γ(1) that are conjugate to this Γ.

We can read much of the data for Γ directly from this marked graph. First, we see that ϕ(O) =
(123)(456)(789) has no fixed points, so ϵ3 = 0. Next, ϕ(S) = (24)(39)(67) has three fixed points, so
ϵ2 = 3. By multiplying the permutations, we have ϕ(T ) = ϕ(OS) = (145783)(296), so ϵ∞ = 2 and the
width of these two cusps are 6 and 3. To find generators, first note that the graph has a cycle, but that
if the vertex between edges 6 and 7 is cut, the cycle is broken the the resulting cut graph is a tree. There
is now a unique path from the marked edge to any edge that does not cross over from edge 6 to edge 7.
The path from the marked edge to the edge labeled i corresponds to a matrix, and we have

M1 = I, M4 = SO, M9 = SOO,

M2 = O, M5 = OSO, M7 = OSOO,

M3 = OO, M6 = OOSO, M8 = OOSOO.

Free generators for Γ are then M−1
7 SM6, M

−1
1 SM1, M

−1
5 SM5, and M

−1
8 SM8, and so Γ ≃ Z∗Z2 ∗Z2 ∗Z2.

In order to construct a special polygon and Farey symbol for this Γ, we first agree to make a cut between
edges 6 and 7, as before, so that the resulting graph is a tree. Next, we place the marked edge on the
free edge from i to e(1

6
) in H, and let the remaining edges fall naturally onto their respective free edges

in H. The result is

1

2

3 9

7

8

4
5 6

0 1�2 1 2

Therefore, the cusps in the Farey symbol are ∞↔0
1
↔1

2
↔1

1
↔2

1
↔∞. In order to fill in the pairing infor-

mation, note that the even points in the arcs ∞↔0
1
, 0

1
↔1

2
, and 2

1
↔∞ are all elliptic points of order 2

for Γ since ϕ(S) fixes each of the cosets labeled 1, 5 and 8. This means that each of these three arcs is
paired with itself. Finally the arc 1

2
↔1

1
is paired with the arc 1

1
↔2

1
in order to glue back together the cut

that was made between the edges 6 and 7. In summary, a Farey symbol for Γ is given by

∞←→
◦

0

1
←→

◦

1

2
←→

1

1

1
←→

1

2

1
←→

◦
∞.

We could have made one cut between edges 2 and 4 or 3 and 9, so there are in total two more Farey
symbols corresponding to this subgroup Γ.

Algorithm 4.5.10. Input: a finite index subgroup Γ of Γ(1). Output: a Farey symbol for Γ.
Step 1: If [Γ(1) : Γ] ≤ 2

return


−1
0
←→

◦
0
1
←→

•
1
0

, ( 0 −1
1 0 ), ( 1 1

0 1 ) ∈ Γ (i.e. Γ = Γ(1))

−1
0
←→

•
0
1
←→

•
1
0

, ( 0 −1
1 1 ), ( 1 −1

0 1 ) ∈ Γ (i.e. Γ = Γ2)
.
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Step 2: Let F be the partial Farey symbol

F =


−1
0
←→ 0

1
←→ 1

1
←→ 1

0
, ( 1 −1

1 0 ) ̸∈ Γ

−1
0
←→ −1

1
←→ 0

1
←→ 1

0
, ( 1 −1

1 0 ) ∈ Γ
.

Step 3: For each unpaired edge in F , check if it can be paired with itself by an even or odd pairing
(Gi ∈ Γ) or if it can be paired with another unpaired edge (free pairing Gi,k ∈ Γ) and fill in all of the
possible pairings.
Step 4: If all edges are paired, then return F .
Step 5: If there is still an unpaired edge in F between, say, ai/ci and ai+1/ci+1, place an new vertex
(ai + ai+1)/(ci + ci+1) in between with no pairing information on the two adjacent edges and goto Step 3.

Given a special polygon P , we may convert P to a Farey symbol F and vice-versa. If P is a special
polygon, we assume that that ∞ is included as a vertex and that there are certain rational vertices
a0
c0
< · · · < an

cn
. These are put into F in the obvious way with the corresponding pairing information.

Note that we have ai+1ci − aici+1 = 1 because the quantity ai+1ci − aici+1 is unchanged when ai
ci

and
ai+1

ci+1
are simultaneously acted upon by some element of Γ(1) and ai+1ci − aici+1 = 1 for the basic choices

ai
ci
= −1

0
and ai+1

ci+1
= 0

1
.

Now given F , we can convert to edges of P in the following way (set g = ( ai+1 ai
ci+1 ci )).

ai
ci
←→

◦
ai+1

ci+1

ai
ci
←→

n

ai+1

ci+1

}
⇐⇒ g(E ∪ ( 0 −1

1 0 )(l)), E = {e(1
4
) + it | t > 0}

ai
ci
←→

•

ai+1

ci+1

⇐⇒ g(E ∪ ( 0 −1
1 −1 )(E)), E = {e(1

6
) + it | t > 0}

Theorem 4.5.11.

1. If P is a special polygon, then the edge pairing matrices {gi} generate some Γ and P is a fundamental
domain for Γ.
There are ϵ2 generators of order 2.
There are ϵ3 generators of order 3.
There are 2g + ϵ∞ − 1 free generators (order ∞).

2. The gi are an independent set of generators for Γ. This means that any element of Γ can be written
uniquely as

∏
gk∈{gi} g

ek
k where ek ̸= 0 and ek is further restricted to 1 ≤ ek < p if gk is a generator

of finite order p. In symbols,
Γ ≃ Z∗ϵ2

2 ∗ Z∗ϵ3
3 ∗ Z∗(2g−1+ϵ∞).

Proof. See [12].

4.6 Γ(2)

The main function for the group Γ(2), which play the same role as j(τ) plays for Γ(1) (the so-called
Hauptmodul), is the modular λ function defined by

λ(τ) =

(
Θ2(τ)

Θ3(τ)

)4

.

Proposition 4.6.1. Let λ(τ) be the modular λ function. Then,
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1. λ(τ) ∈M !
0(Γ(2)), Θ

4
2,Θ

4
3,Θ

4
4 ∈M2(Γ(2))

2. λ(τ) has a simple pole at 1
1
, a simple zero at 1

0
, and takes the value 1 at 0

1
.

3. A0(Γ(2)) = C(λ).

4. Sk(Γ(2)) = Θ4
2Θ

4
3Θ

4
4Mk−6(Γ(2)).

5. Θ4
3 = Θ4

2 +Θ4
4.

6. Mk(Γ(2)) =
⊕

2a+2b=k
a,b≥0

CΘ4a
2 Θ4b

3 .

Proof. (1). The fundamental domain {τ | |Re(τ)| ≤ 1 and |2τ ± 1| ≥ 1} for Γ(2) shows that Γ(2) is
generated by T 2 and ST 2S. From Proposition 2.8.3, we have

(Θ2,Θ3,Θ4)|T = (ζ18Θ2,Θ3,Θ4),

(Θ2,Θ3,Θ4)|S = ζ−1
8 (Θ4,Θ3,Θ2).

Therefore,

(Θ2,Θ3,Θ4)|T 2 = (ζ4Θ2,Θ3,Θ4),

(Θ2,Θ3,Θ4)|ST 2S = (ζ34Θ2, ζ
3
4Θ3,Θ4).

and we see that Θ4
2/Θ

4
3 ∈M !

0(Γ(2)) because Exercise 2.12.4 shows that λ has no poles or zeros in H.
(2). For the values at the cusps, we have the table

cusp function q-series
1
0

λ|I Θ4
2

Θ4
3
= 2q1/2 + · · ·

0
1

λ|S Θ4
4

Θ4
3
= 1 + · · ·

1
1

λ|TS −Θ4
4

Θ4
2
= −1

2
q−1/2 + · · ·

(3). Since ordΓ(2)(λ) = 1 all of the assertions of Proposition 4.4.7 apply.
(4). Since Θ4

2Θ
4
3Θ

4
4 has a simple zero at each cusp, we must obtain Sk in this way.

(5). The form Θ4
2+Θ4

4−Θ4
3 = O(q2/2) inM2(Γ(2)) has a zero of order at least 2 at∞ which contradicts

the valence formula unless this function vanishes identically.
(6). First note Θ2 and Θ3 are algebraically independent. If f ∈Mk(Γ(2)) with k ≥ 0 and even, then

g := f/Θ2k
3 ∈ A0(Γ(2)) with the only possible pole of g located at the pole of λ. Therefore, part 2 of

Prop 4.4.7 shows that g is a polynomial in λ of degree no more than k/2 since the valence formula says
that f has k/2 zeros (hence g has no more than k/2 zeros).

4.7 Building congruence modular forms N from Klein Forms

A subgroup Γ of Γ(1) is called a congruence subgroup if Γ contains Γ(N) for some N . The smallest such
N turns out to be the level of Γ in this case (see Proposition 4.13.4 below). Similarly, a modular function
f is said to have level N if it is invariant under Γ(N). Most subgroups of Γ(1) are not congruence; let an
denote the number of subgroups of Γ(1) of index n and let bn denote the number of congruence subgroups
of Γ(1) of index at most n. Then it is known ([14], [15], [19]) that

an ∼ exp

(
1

6
n log n− 1

6
n+ n1/2 + n1/3 +

1

2
log n− 1

4
− 1

2
log 2π

)
,

log(bn) ∼

(√
2− 1

2

)2
log2 n

log log n
.
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One of the building blocks of modular forms of higher levels is the Klein form kr⃗(τ), which is defined
for r⃗ ∈ Q2, τ ∈ H and has weight −1 and generalizes η(τ)−2. We will also introduce a form of positive
integral weight k by ekr⃗(τ) which generalizes the Eisenstein series E2k(τ). Set

kr⃗(τ) = −2πizeπir1z
∏
ω∈Λ′

(
1 +

z

ω

)
e−

z
ω ,

e1r⃗(τ) =
1

2πi

(
1

z
+
∑
Ω∈Λ′

1

z + ω
− 1

ω

)
,

ekr⃗(τ) =
(k − 1)!

(2πi)k

∑
ω∈Λ

1

(z + ω)k
, k ≥ 2,

where Λ = Zτ + Z and z = r1τ + r2 and the sums or products over ω = mτ + n are performed over n
first and then m. These sums are not defined if r⃗ ∈ Z2, in which we take out the undefined term and
obtain the definitions

ekr⃗(τ) =

{
ζ(1− k)Ek(τ) , k even

0 , k odd
, for r⃗ ∈ Z2.

The function kr⃗(τ) is a specialization of the Weierstrass σ function for the lattice Λ = Zτ + Z, which
is defined as

σ(z|τ) = z
∏
ω∈Λ′

(
1− z

ω

)
e

z
ω
+ z2

2ω2 .

The product is absolutely convergent. In Exercise 2.12.8 we had, for ( a b
c d ) ∈ Γ(1) and integers A,B with

ω = Aτ +B

σ(z|τ) = −e
π2

6
E2(τ)z2

2πη(τ)3
Θ1(z|τ),

σ

(
z

cτ + d

∣∣∣aτ + b

cτ + d

)
= (cτ + d)−1σ(z|τ),

σ(z + ω|τ)
σ(z|τ)

= (−1)A+B+ABe

(
−(6A+ πiE2(τ)ω)(2z + ω)

12

)
.

Thus the following relations are clear (when z = r1τ + r2).

kr⃗(τ) = −2πieπir1ze−
π2z2

6
E2(τ)σ(z|τ),

2πie1r⃗(τ) = −
π2

3
E2(τ)z +

d

dz
log σ(z|τ),

(2πi)2e2r⃗(τ) =
π2

3
E2(τ)−

d2

dz2
log σ(z|τ).

Using the Jacobi triple product identity in these relations give the following proposition.

53



Proposition 4.7.1. Set z = r1τ + r2. The Klein forms have the series expansions,

kr⃗(τ) = q(r1−1)/2
z

(qz; q)∞(q/qz; q)∞
(q; q)2∞

,

e1r⃗(τ) =
qz + 1

2(qz − 1)
−

∞∑
n=1

(qnz − q−n
z )

qn

1− qn
, for |r1| < 1,

e2r⃗(τ) =
qz

(qz − 1)2
+

∞∑
n=1

(qnz + q−n
z )

nqn

1− qn
, for |r1| < 1,

e3r⃗(τ) =
qz(qz + 1)

(qz − 1)3
−

∞∑
n=1

(qnz − q−n
z )

n2qn

1− qn
, for |r1| < 1,

where ek+1
r⃗ (τ) is formally obtained from ekr⃗(τ) by applying −1

2πi
∂
∂z
.

Note that the classical identity [1, Entry 3.2.1],

(q; q)2∞
(x; q)∞(q/x; q)∞

=
∞∑

n=−∞

(−1)nqn(n+1)/2

1− xqn
,

allows us to recognize the transformation properties of the sums of the type on the right hand side of
this identity, since it is essentially the reciprocal of a Klein form.

Proposition 4.7.2. For N > 1,

N−1∏
j=0

k i
N
, j
N
(τ) = ζ

(N−1)(i−N)
4N

η(Nτ)2

η(τ)2N
k i
N
, 0
N
(Nτ),

N−1∏
j=1

k 0
N
, j
N
(τ) = Nζ1−N

4

η(Nτ)2

η(τ)2N
.

Proof. Using the q-product representation of the Klein forms, we see that these follows from the identity

N−1∏
j=0

(1− ζjNx
i) = 1− xiN .

The modular transformation and quasi-periodicity relations for the σ function give the following.

Proposition 4.7.3. For r⃗ = (r1, r2) and g = ( a b
c d ) ∈ Γ(1),

kr⃗|g(τ) = kr⃗.g(τ),

e1r⃗|g(τ) = e1r⃗.g(τ) + c(aτ + b)r1 + c(cτ + d)r2,

e2r⃗|g(τ) = e2r⃗.g(τ)−
c

2πi(cτ + d)
,

ekr⃗ |g(τ) = ekr⃗.g(τ), k ≥ 3.

If (n1, n2) ∈ Z2,

kr⃗+(n1,n2)(τ) = (−1)n1+n2+n1n2e(1
2
(r1n2 − r2n1))kr⃗(τ),

e1r⃗+(n1,n2)
(τ) = e1r⃗(τ)− n1,

ekr⃗+(n1,n2)
(τ) = ekr⃗(τ), k ≥ 2.
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Proposition 4.7.4. If gcd(a, c) = 1, then

orda
c
kr⃗(τ) =

(
frac(r⃗.(a, c)⊺)

2

)
,

where frac(x) denotes the fractional part of x that satisfies 0 ≤ frac(x) < 1.

Proof. Note that with z = uτ + v

ku,v(τ) = q(u−1)/2
z

(qz; q)∞(q/qz; q)∞
(q; q)2∞

= e((u− 1)(uτ + v)/2)
(e(uτ + v); q)∞(e(τ − uτ − v); q)∞

(q; q)2∞

= e((u− 1)v/2)qu(u−1)/2 (e(v)q
u; q)∞(e(−v)q1−u; q)∞

(q; q)2∞
.

If 0 < u < 1, then the lowest power of q in this expression is qu(u−1)/2. For general real u we can shift
u by integers without chaninging the order. Finally, the general proposition follows combining this with
Proposition 4.7.3.

Proposition 4.7.5 ([11]). For r⃗ = (r1, r2) ∈ 1
N
Z2,

1. For k = −
∑

r⃗m(r⃗), the form
∏

r⃗ kr⃗(τ)
m(r⃗) is in M !

k(Γ(N)) if and only if∑
r⃗

m(r⃗)(Nr1)
2 ≡ 0 mod N gcd(2, N),∑

r⃗

m(r⃗)(Nr2)
2 ≡ 0 mod N gcd(2, N),∑

r⃗

m(r⃗)(Nr1)(Nr2) ≡ 0 mod N .

2. The form
∑

r⃗m(r⃗)e1r⃗(τ) is in M1(Γ(N)) if and only if
∑

r⃗m(r⃗)r1 = 0.

3. The form
∑

r⃗m(r⃗)e2r⃗(τ) is in M2(Γ(N)) if and only if
∑

r⃗m(r⃗) = 0.

4. The form
∑

r⃗m(r⃗)ekr⃗(τ) is in Mk(Γ(N)) for any k ≥ 3.

We will give a generator xN for the function field A0(Γ(N)) for N < 6 in Section 4.9. The following
theorem tells us that two ratios of Klein forms suffice for N ≥ 6.

Theorem 4.7.6 ([9]). For N ≥ 6, we have A0(Γ(N)) = C(x2,N(τ), x3,N(τ)), where

xr,N(τ) =

(
kr/N,0(Nτ)

k1/N,0(Nτ)

)gcd(2,r,N)

.

Furthermore, x3,N is integral over Q[x2,N ].

Exercise 4.7.7 (Representation of SL2(Zp) on C
p−1
2 ). Let p > 3 be a prime and for 1 ≤ n ≤ p−1

2
set

xn(τ) = q
n(n−p)

2p
(qp; qp)∞(qi; qp)∞(qp−i; qp)∞

(q; q)3p∞
. (4.7.1)
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1. Use the representation

√
pζp−1

8 ζ
(p−1)(n−p)
4p xn(τ) =

p−1∏
j=0

kn
p
, j
p
(τ)

p−1
2∏

j=1

k 0
p
, j
p
(τ)

and Proposition 4.7.5 to deduce that xn ∈M !
1−3p

2

(Γ(p)). Hint: p2 ≡ 1 mod 24.

2. Set X(τ) = (x1(τ), . . . , x p−1
2
(τ)). Use the representation

xn(τ) = iζ−n
2p

Θ
[ 1

2
+n

p
1
2

]
(0|pτ)

η(τ)3p

and Proposition 2.8.3 to deduce that X|T = ρ(T ).X and X|S = ρ(S).X where

ρ(T )i,i = ζ
i(i−p)

2
p , ρ(T )i,j = 0,

ρ(S)i,j =
(−1)i+j−1+ p2−1

8√
(−1) p−1

2 p

(ζ ijp − ζ−ij
p ).

Hint: After applying S, you will have to dissect the θ-series in τ
p
to get a θ-series in pτ .

3. We now have a homomorphism ρ : SL2(Z)→ GL p−1
2
(C) that is defined on the generators S and T

as above and ρ(−I) = (−1)(p+1)/2. By lifting the matrices modulo p, deduce that M 7→ ρ(M) is a
representation of SL2(Zp).

4.8 Building congruence modular forms from η products

Proposition 4.8.1. Let gcd(a, c) = 1 and M ∈ Z2×2 with detM > 0. Then,

orda
c
η|M(τ) =

1

24

gcd(M.(a, c)⊺)2

det(M)
.

Proof. It suffices to prove this when a
c
= 1

0
, that is,

ord∞(m21τ +m22)
−1/2η

(
m11a+m12

m21τ +m22

)
=

gcd(m11,m21)
2

det(M)

For this, we seek a ( a b
c d ) ∈ Γ(1), such that(

a b
c d

)(
m11 m12

m21 m22

)
=

(
A B
0 D

)
.

The order will then be given by A
24D

. We obtain c = −m21

gcd(m11,m21)
and d = m11

gcd(m11,m21)
and the result easily

follows.

We record a simple fact here. If Γ1 > Γ2, then

ordΓ2(f) = ordΓ1(f)[Γ1 : Γ2].

56



Proposition 4.8.2. For any integer N ≥ 1,

ordΓ0(N)(j(τ)) = ordΓ0(N)(j(Nτ)) = [Γ(1) : Γ0(N)].

Proof. The function j(τ) has a simple pole at each cusp a
c
, which translates to a pole of order N

c gcd(c,N/c)

with respect to Γ0(N). Therefore,

ordΓ0(N)(j(τ)) =
∑
c|N

Nϕ(gcd(c,N/c))

c gcd(c,N/c)
.

The function j(Nτ) has a pole at a
c
of order N

c gcd(c,N/c)
· gcd(c,N)2

N
. Therefore,

ordΓ0(N)(j(τ)) =
∑
c|N

Nϕ(gcd(c,N/c))

c gcd(c,N/c)

gcd(c,N)2

N
.

These sums are the same by the substitution c→ N/c

Proposition 4.8.3. Set Γ = Γ0(N) and suppose that f(τ) =
∏

l|N η(lτ)
rl and that the three numbers

k = 1
2

∑
l|N

rl, ord∞(f,Γ) = 1
24

∑
l|N

lrl, ord0(f,Γ) =
1
24

∑
l|N

N
l
rl,

are all integers. Then, for any g = ( a b
c d ) ∈ Γ with odd d, f satisfies

f |g,k(τ) =

(
(−1)k

∏
l|N l

|rl|

d

)
f(τ).

Remark 4.8.4. In the case that d is even, c must be odd and we can recover the multiplier for such d by

f |g,k(τ) =

(
(−1)k

∏
l|N l

|rl|

c+ d

)
f(τ).

simply be replacing τ by τ − 1.

Proof. Assuming d is odd, the multiplier system for η (Exercise 2.12.6) has the form

η

(
aτ + b

cτ + d

)
=

(
c

|d|

)
ζ
3d+d(b−c)+ac(1−d2)
24

√
−i(cτ + d)η(τ),

or η

(
l
aτ + b

cτ + d

)rl

=

(
c|rl|l|rl|

|d|

)
ζ
3drl+dblrl−(ad2−a+d) c

N
N
l
rl

24 (−i(cτ + d))
rl
2 η(lτ)rl ,

since l aτ+b
cτ+d

= a(lτ)+bl
c
N

N
l
(lτ)+d

. Therefore

f |g,k(τ)
f(τ)

= (−i)k
(
c2|k|

∏
l|N l

|rl|

|d|

)
ζ
6dk+24db ord∞(f,Γ)−24(ad2−a+d) c

N
ord0(f,Γ)

24

=

(
(−1)k

∏
l|N l

|rl|

d

)
,

since k, ord∞(f,Γ), and ord0(f,Γ) are all integers.
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For l | N , the order of η(lτ) at the cusp a
c
is given by gcd(l,c)2

24l
by Proposition 4.8.1, while the width of

this cusp with respect to Γ0(N) is given by N
gcd(N,c2)

, as in Proposition 4.3.3. Using this facts and Section

4.4, we can write down generators for Γ0(N) for some N .

Example 4.8.5. Γ0(18). There are eight cusps 1
1
, 1
2
, 1
3
, 2
3
, 1
6
, 5
6
, 1
9
, 1
18
. The function

x = η(1τ)−2η(2τ)1η(3τ)1η(6τ)−1η(9τ)−1η(18τ)2

can be verified to be in A0(Γ0(18)) with a simple pole at 1
1
and a simple zero at 1

18
. It is thus a Hauptmodul

for Γ0(18). We can also write down a function with a simple pole at 1
1
and a simple zero at 1

9
,

1 + 2x = η(1τ)−2η(2τ)1η(3τ)0η(6τ)0η(9τ)2η(18τ)−1.

Example 4.8.6. Γ0(33). There are four cusps 1
1
, 1
3
, 1
11
, 1
33
. The functions

x =
η(3τ)η(33τ)

η(τ)η(11τ)
,

y =
η(3τ)6η(11τ)6

η(τ)6η(33τ)6
,

can be verified to have, for x, simple poles at 1
1
and 1

11
, and for y, quintuple poles at 1

1
and 1

33
. The orders

of the functions x and y with respect to Γ0(33) are thus 2 and 10. Since x + y has odd order and x has
order 2, x and y generate A0(Γ0(33)) by Proposition 4.4.8. The relation of degree 2 in y and degree 10
in x is

(y − 1)2

y
=

(3x2 + x+ 1) (9x4 + 15x3 + 14x2 + 5x+ 1)
2

x5
.

Following [8], the η function can be generalized to any even real Dirichlet character χ. Set

ηχ(τ) = q−
1
2
L(−1,χ)

∞∏
n=1

(1− qn)χ(n), (χ(−1) = 1).

Here L(s, χ) is the Dirichlet series
∑∞

n=1
χ(n)
ns , which converges for s > 1 and can be analytically continued

to C with a possible pole at s = 1. When χ is the function 1 identically, we recover the usual η function
because of the value L(−1, 1) = ζ(−1) = − 1

12
. It suffices to study primitive characters because if χ is a

character modulo k and χ(n) = χ1(n)χ0(n) where χ1 is the primitive character modulo ∆|k and χ0(n) is
the principal character modulo k, then

ηχ(τ) =
∏
l| k

∆

ηχ1(lτ)
µ(l)χ1(l).

It should be pointed out at this point that the only real even primitive characters are given by

χ(n) =

(
∆

n

)
,

where
( ·
·

)
is the Kronecker symbol and ∆ is a fundamental discriminant (see definition 7.3.1). The period

of this character is ∆.

Proposition 4.8.7 ([8]). Let ∆ > 1 be a fundamental discriminant and χ the associated primitive real
even character. Set χ′(n) to be χ(n) if ∆ is a prime, and 1 otherwise. Then, for any ( a b

c d ) ∈ Γ0(∆), ηχ
satisfies the transformation formula

ηχ

(
aτ + b

cτ + d

)
= χ′(d)ηχ(τ)

χ(d) ×


ζab5 , ∆ = 5

ζa−d+bc−8b
16 , ∆ = 8

1 , ∆ > 8

.
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4.9 Γ(N) and regular polyhedron

It is known that the finite groups acting faithfully on C∞ are exactly

Zn the cyclic group of order n,
Zn ⋊ Z2 the dihedral group of order 2n,
A4 the symmetries of the tetrahedron of order 12,
S4 the symmetries of the octahedron of order 24,
A5 the symmetries of the icosahedron of order 60.

For the modular group, it turns out that restricting to normal subgroups of genus 0 puts a restriction
on the first two types, and there is a finite list of possible groups. First, for any subgroup Γ with
µ = [Γ(1) : Γ], let e2 (resp. e3, e∞) denote the number of equivalent classes under Γ of the points Γ(1)(i)
(resp. Γ(1)(e(1

3
)), Γ(1)(∞)). Equivalently, e2, e3 and e∞ are the number of cycles in the permutations

S and O and T in the permutation representation of Γ. Thus, em = ϵm + µ−ϵm
m

for m = 2, 3,∞ since

e∞ = ϵ∞. Next, suppose that Γ is a normal subgroup of Γ(1). This means that all of the cycles of S and
O and T have the same length, and therefore that em|µ for m = 2, 3,∞. Thus, in this case we can define
nm by

µ = n2e2 = n3e3 = n∞e∞,

and this corresponds to the triplet (n2, n3, n∞) describing the branching information of Γ. The genus
formula may be rearranged as

2− 2g

µ
=

1

n2

+
1

n3

+
1

n∞
− 1. (4.9.1)

Note that n2 is either 1 or 2 and n3 is either 1 or 3, while n∞, which is the width of any cusp, has no
such restriction. An easy consequence is that µ ≡ 0 mod 6 if µ > 3. Also, if Γ2 ⊴ Γ1 ⊴ Γ(1), then each
nm(Γ1) divides nm(Γ2).

Proposition 4.9.1. For prime p with p ≥ 5, PSL2(Z/pZ) is simple.

Proof. Suppose that there were a non-trivial normal subgroup G of PSL2(Z/pZ). By the second isomor-
phism theorem for groups, this would imply the existence of a group G′ such that Γ(p) ⊴ G′ ⊴ Γ(1).
This is impossible because the branching information for Γ(p), (2, 3, p), has the possible divisors (2, 3, p),
(2, 1, p), (1, 3, p), (1, 1, p), (2, 3, 1), (2, 1, 1), (1, 3, 1), (1, 1, 1). It is easy to check that all but the first
and last two possibilities are ruled out by (4.9.1), and these two possibilities are ruled out because the
correspond to trivial choices of G.

Proposition 4.9.2. If Γ is a proper normal subgroup of Γ(1) with finite index and genus 0, then Γ is
one of the following:

Γ Γ(1)/Γ (n2, n3, n∞)
Γ2 Z2 (2, 1, 1)
Γ3 Z3 (1, 3, 1)
Γ(2) S3 (2, 3, 2)
Γ(3) A4 (2, 3, 3)
Γ(4) S4 (2, 3, 4)
Γ(5) A5 (2, 3, 5)

Proof. We first deal with the case n2 = n3 = 1. In this case, (4.9.1) is 2
µ
= 1 + 1

n∞
and so µ = 1 = n∞.

So in this case, Γ = Γ(1). Next, suppose that n2 = 1 and n3 = 3, so that 2
µ
= 1

3
+ 1

n∞
. Since µ ≥ n∞ this

implies that µ = 3 and that Γ = Γ3 as this is the only normal subgroup of index 3. Next, suppose that
n2 = 2 and n3 = 1, so that 2

µ
= 1

2
+ 1

n∞
. Since µ ≥ n∞ this implies that µ = 2 and that Γ = Γ2 as this
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is the only normal subgroup of index 2. Next, suppose that n2 = 2 and n3 = 3, so that 2
µ
= −1

6
+ 1

n∞
.

This implies that n∞ = 2, 3, 4, 5 with corresponding µ = 6, 12, 24, 60. Set G = Γ(1)/Γ so that µ = |G|.
We will first determine G up to isomorphism and then Γ exactly. Note that G is generated (modulo Γ)
by S, ST and T with S2 = (ST )3 = T n∞ = 1.

First, suppose that |G| = 6, (2, 3, 2). Since S has order 2 and ST has order 3 but their product T has
order 2 (not 6), G cannot be Abelian, and so G ≃ S3.

Next, suppose that |G| = 12, (2, 3, 3). A Sylow 3 subgroup cannot be normal, because otherwise its
quotient would correspond to a normal subgroup of Γ(1) of index 4 which doesn’t exist. Since A4 is the
only group of order 12 that doesn’t have a normal Sylow 3 subgroup, G ≃ A4.

Next, suppose that |G| = 24, (2, 3, 4). As before, there are 4 Sylow 3 subgroups, and we obtain a
homomorphism ϕ : G → S4 by the action of G on the 4 Sylow 3 subgroups where imϕ ≃ A4, S4 since
these are the only transitive subgroups of S4 whose order is divisible by 6. If imϕ = A4, then this
corresponds to another normal subgroup Γ1 of index 12. The only group with index 12 corresponds to
the triplet (2, 3, 3), which does not divide the triplet (2, 3, 4). Hence imϕ = S4 and so G ≃ S4.

Finally, suppose that |G| = 60, (2, 3, 5). Since the only triplets dividing (2, 3, 5) are the trivial ones,
G must be simple. Standard group theory arguments using the Sylow 2 subgroup show that A5 is the
only simple group of order 60.

To finish the proof, we need to show that Γ(N) is the only possibility for Γ when the branching
information is (2, 3, N) (and g = 0). By Proposition 4.3.1, the groups Γ(2),Γ(3),Γ(4),Γ(5) have the
correct indexes in Γ(1), that is

µ =
12N

6−N
= [Γ(1) : Γ(N)] =

{
1
2
N3
∏

p|N

(
1− 1

p2

)
, N ≥ 3

6 , N = 2
,

for N = 2, 3, 4, 5. Consider Γ ∩ Γ(N) for N = 2, 3, 4, 5. We know that Γ ∩ Γ(N) is a normal subgroup of
Γ, but be do not know a priori that the genus of Γ ∩ Γ(N) is 0. However, we are given that both Γ and
Γ(N) have cusp width N , and so Γ ∩ Γ(N) has cusp width N . This means that the branching data of
Γ ∩ Γ(N) is (2, 3, N) and if µ and g denote the index and genus of Γ ∩ Γ(N), we have

2− 2g

µ
=

1

2
+

1

3
+

1

N
− 1.

Since the right hand side is strictly positive for N = 2, 3, 4, 5, g is forced to be 0 and µ is forced to be
12N/(6−N). This means that [Γ(1) : Γ ∩ Γ(N)] = [Γ(1) : Γ(N)], which forces Γ = Γ(N).

Although we deduced that there is only one normal subgroup of genus 0 with branching data (2, 3, N)
for N = 2, 3, 4, 5, this result does not need to hold for higher genera. For example, all normal subgroups
of genus 1 have branching data (2, 3, 6), and there are infinitely many of them ([16]).

Having classified all of the normal subgroup Γ of Γ(1) with genus 0, let us turn now to the problem of
constructing the spaces Mk(Γ) for these Γ. The groups Γ2 and Γ3 are not very interesting, as (Exercise
4.9.9)

A0(Γ
2) = C(

√
j − 1728), A0(Γ

3) = C(j1/3).
so let us turn to Γ(N) for N = 2, 3, 4, 5. Assuming that there is a Hauptmodul, say fN(τ), for these
Γ(N), it is possible to show that there is a Hauptmodul xN that is uniquely determined by

xN(τ) = q−
1
N (1 + integral powers of q).

Since Γ(N) is a normal subgroup of Γ(1), there must be constants A,B,C,D, depending on N , such that

fN |T =
AfN +B

CfN +D
.
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By rescaling the matrixM = ( A B
C D ), we may assume that one of its eigenvalues is 1. If the other eigenvalue

were 1, then ( A B
C D ) would be similar to either ( 1 1

0 1 ) or (
1 0
0 1 ). The first is a contradiction because M

N
= I

since TN ∈ Γ(N). If the second were true then fN would be invariant under T and so N divides
ord∞(fN(τ)− fN(∞),Γ(N)) ̸= 0, which is a contradiction because fN(τ)− fN(∞) is also a Hauptmodul
for Γ(N). We now have M = P−1( ζ 0

0 1 )P where ζ is an N th root of unity. Setting xN = P (fN) gives
xN |T = ζrNxN for some integer r and so q−r/NxN has an expansion in integral powers of q. Since xN is
also a Hauptmodul, r = ±1 and we choose r = −1 which gives xN a simple pole at ∞. It will be shown
that the following functions are such Hauptmoduln for ΓN .

x2(τ) =
(q1/2; q1/2)8∞ + (−q1/2;−q1/2)8∞

2q1/2(q2; q2)8∞
= q−

1
2 (1 + 20q − 62q2 + 216q3 − 641q4 + · · · ),

x3(τ) =
(q1/3; q1/3)3∞ + 3q1/3(q3; q3)3∞

q1/3(q3; q3)3∞
= q−

1
3 (1 + 5q − 7q2 + 3q3 + 15q4 + · · · ),

x4(τ) =
(q2; q2)6∞

q1/4(q; q)2∞(q4; q4)4∞
= q−

1
4 (1 + 2q − q2 − 2q3 + 3q4 + 2q5 + · · · ),

x5(τ) =
(q2; q5)∞(q3; q5)∞
q1/5(q; q5)∞(q4; q5)∞

= q−
1
5 (1 + q − q3 + q5 + q6 − q7 − 2q8 + · · · ).

(4.9.2)

A more uniform (but multi-valued) definition of the modular function xN is

xN =

j−
N−6
12N 2F1

( N−6
12N

, 5N−6
12N

N−1
N

∣∣∣1728j

)
j−

N+6
12N 2F1

( N+6
12N

, 5N+6
12N

N+1
N

∣∣∣1728j

)
= q−

1
N

(
1 + 120

N(N2−1)
q + 180(N−5)(3N2+21N+8)

N2(N+1)2(4N2−1)
q2 + · · ·

)
,

(4.9.3)

where j is the j function. This representation will be proven in Chapter 8 where Proposition 4.9.4 below
can be utilized.

Proposition 4.9.3. For N = 2, 3, 4, 5, xN is a Hauptmodul for Γ(N) and xNN is a Hauptmodul for Γ1(N).
The action of T on x is given by

xN |T = ζ−1
N xN .

The action of S on xN is given in the following table.

N xN |S
2 8x+192

x−1

3 3x+18
x−3

4 2x+4
x−2

5 (1+
√
5)x+2

2x−1−
√
5

Proof. We only deal with the case N = 5 as the other cases are similar and simpler. By Proposition
4.7.2, x5 has the representation

x5(τ) = ζ−1
5

4∏
i=0

k 2
5
, i
5
(τ)

k 1
5
, i
5
(τ)

,

hence we see immediately from Proposition 4.7.5 that x5 ∈ M !
0(Γ(5)). Next, suppose that a

c
is a cusp of

Γ(5) and that g = ( a b
c d ) ∈ Γ(1). By Proposition 4.7.4,

1
5
orda

c
(x5,Γ(5)) =

4∑
i=0

(
frac

(
2a+ic

5

)
2

)
−

4∑
i=0

(
frac

(
a+ic
5

)
2

)
.
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If (c, 5) = 1, it is easy to see that both of these sums are −2/5 (which is (1 − N2)/12N when N = 5),
so x5 has no zeros or poles at these cusps. The only cusps of Γ(5) whose denominators are divisible by 5
are represented by 1

5
, 2
5
, where x5 has a simple pole and simple zero, respectively. We now know that x5

is a Hauptmodul for Γ(5) since x5 clearly has no poles in H. It is clear from the q-series expansion of x5
that x5|T = ζ−1

5 x5. From this we can deduce that x55 ∈ A0(Γ1(5)) since Γ1(5) is generated by Γ(5) and T .
Since the cusps for Γ1(5) are a subset of the cusps for Γ(5), the only possible location of a pole of x55 on
H/Γ1(5) is at the cusp 1

5
(equivalent to ∞), where x55 has a simple pole with respect to Γ1(5). Finally,

by Propositions 4.7.3 and 4.7.1, the q-series expansion of x5|S is

x5|S = ζ−1
5

4∏
i=0

k i
5
,−2

5
(τ)

k i
5
,−1

5
(τ)

= −ζ35
1− ζ35
1− ζ45

(ζ25q
1/5; q1/5)∞(ζ35q

1/5; q1/5)∞
(ζ15q

1/5; q1/5)∞(ζ45q
1/5; q1/5)∞

=
1 +
√
5

2
+

5 +
√
5

2
q1/5 +

5 + 3
√
5

2
q2/5 +O(q3/5).

From these first few terms it is a simple matter to determine the constants A, B, C and D in the relation

x5|S =
Ax5 +B

Cx5 +D
,

which must exist because x5|S is a Hauptmodul for Γ(5) since this is a normal subgroup of Γ(1).

Proposition 4.9.4. Let {f(z), z} denote the Schwarzian derivative

{f(z), z} = f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

.

Then,

{xN , j} =
1
2
(1−N−2)j(j − 1728)− 120j + 1327104

j2(j − 1728)2
.

Proof. Since the Schwarzian derivative is invariant under GL2(C) and Γ(1) acts on xN by a subgroup
of GL2(C), as a function of τ , {xN , j} is in A0(Γ(1)). We assert that in fact j2(j − 1728)2{xN , j}
is a polynomial of degree 2 in j. First at any point τ0 ∈ H that is not Γ(1) equivalent to either
i or e(1

3
), j(τ) has an expansion j(τ) = b0 + b1(τ − τ0) + · · · where b1 ̸= 0. Therefore, since the

function xN does not ramify anywhere, it has an expansion in the neighborhood of τ0 in the form
xN = a0 + a1(j − j(τ0)) + a2(j − j(τ0))2 + · · · where a1 ̸= 0. Therefore,

{xN , j} =
6 (a1a3 − a22)

a21
+

24(a32 − 2a1a3a2 + a21a4)

a31
(j − j(τ0)) + · · ·

remains finite at this location. In the neighborhood of i, j has an expansion j = 1728 + b2(τ − i)2 + · · · ,
so xN has an expansion xN = a0 + a1(j − 1728)1/2 + a2(j − 1728)2/2 + · · · where a1 ̸= 0. Therefore,

(j − 1728)2{xN , j} =
3

8
+

3(a1a3 − a22)
2a21

(j − 1728) + · · ·

remains finite also at i. In the neighborhood of e(1
3
), xN has an expansion xN = a0+a1j

1/3+a2j
2/3+ · · ·

where a1 ̸= 0. Therefore, we have the expansion

j2{xN , j} =
4

9
+

2(a1a3 − a22)
3a21

j4/3 + · · · ,
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which, when taken with the previous three expansions, shows that j2(j−1728)2{xN , j} has possible poles
only at ∞. At ∞ we have the expansions j = q−1 + 744 + · · · and xN = q−1/N(1 + b1q + · · · ), so xN has
the expansion xN = j1/N(1 + a1j

−1 + a2j
−2 + · · · ) in terms of j. From this we obtain the expansion

{xN , j} =
(
1
2
− 1

2N2

)
j−2 + · · · (decending powers of j),

which shows that j2(j − 1728)2{xN , j} is a polynomial of degree 2 in j with leading coefficient 1
2
− 1

2N2 .
If P (j) denotes this polynomial, then the expansions of (j − 1728)2{xN , j} and j2{xN , j} show that
1728−2P (1728) = 3

8
and 1728−2P (0) = 4

9
, which uniquely determines the polynomial.

Proposition 4.9.5. For N = 2, 3, 4, 5, j(τ), j(Nτ), η(τ/N)24

η(Nτ)24
, η(τ)24

η(Nτ)24
have the following representations

as rational functions of xN .

N j(τ) j(Nτ) η(τ/N)24

η(Nτ)24
η(τ)24

η(Nτ)24

2 (x2+192)3

(x2−64)2
(x2−48)3

x2−64
(x− 8)3 x2 − 64

3 x3(x3+216)3

(x3−27)3
x3(x3−24)3

x3−27
(x− 3)8 (x3 − 27)2

4 (x8+224x4+256)3

x4(x4−16)4
(x8−16x4+16)3

x4(x4−16)
(x− 2)15(1 + 2x−1)3 (x4 − 16)3

5 (x20+228x15+494x10−228x5+1)3

x5(x10−11x5−1)5
(x20−12x15+14x10+12x5+1)3

x25(x10−11x5−1)
(x− 1− x−1)24 (x5 − 11− x−5)4

Proof. Let us first show that

j(τ) =
A(xN)

3

C(xN)N
= 1728 +

B(xN)
2

C(xN)N
,

where A, B, and C are polynomials of degrees 4N
6−N

, 6N
6−N

, and 6+N
6−N

. Then using the fact that these rational
functions should contain only powers of xN that are divisible by N , it is easy to compute the coefficients
of A, B and C by comparing the q-series expansions. At every cusp of H/Γ(N) j(τ) has a pole of order N .
Since x has a pole at the cusp∞, the degree of C should be µ/N−1, where µ = [Γ : Γ(N)] = 12N/(6−N).
At every point in Γ(1)(i)/Γ(N), j(τ) − 1728 has a double zero, hence B has degree µ/2. Similarly, A
must have degree µ/3.

We know that j(Nτ) is a function of order µ on Γ(N) by Proposition 4.8.2. Therefore,

j(Nτ) =
A′(xN)

3

C ′(xN)
= 1728 +

B′(xN)
2

C ′(xN)
,

where A′, B′, and C ′ are polynomials of degrees µ/3, µ/2, and µ − N2. C ′ has a different degree from
C because j(Nτ) has a pole of order N2 at ∞. In this case the order of j(Nτ) is slight more difficult to
calculate at the cusps of Γ(N) since the order of the pole of j(Nτ) at the cusp a

c
of Γ(N) is gcd(c,N)2.

We will explain the factorization of C ′ in the cases of N = 4, 5. Two cusps of Γ(5) are 1
5
and 2

5
, and

j(5τ) has a pole of order 25 at each of these. Since 1
5
is equivalent to ∞, this cusp does not contribute

any factor to C ′, but 2
5
contributes a factor x25. All of the other cusps of Γ(5) have gcd(c, 5) = 1, so they

contribute simple factors to C ′. The cusps of Γ(4) are 1
1
, 1
2
, 1
3
, 1
4
, 2
1
, 4
1
, which contribute factors to C ′ of

multiplicities 1, 4, 1, 0, 1, 1.
The identities for the η quotients are left as exercises.

Proposition 4.9.6. For N = 2, 3, 4, 5, set yN(τ) = xN(
τ
N
)N .

1. yN(τ) is a rational function of xN(τ) of degree N . Explicitly,

N yN in terms of xN

2 (x+24)2

x+8

3 (x+6)3

x2+3x+9

4 (x+2)4

x(x2+4)

5 x(x4+3x3+4x2+2x+1)
x4−2x3+4x2−3x+1
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2. xN(τ) is expressible in terms of yN(τ) and radicals. Specifically, there are constants A,B, . . . , C ′, D′,
depending on N , such that (

AxN +B

CxN +D

)N

=
A′yN +B′

C ′yN +D′ .

Proof. (1). Since xN(τ)
N ∈M !

0(Γ1(N)) and(
1 0
0 N

)(
a b
c d

)(
1 0
0 N

)−1

=

(
a b

N

Nc d

)
∈ Γ1(N),

if ( a b
c d ) ∈ Γ(N), it follows that yN = xN(

τ
N
)N ∈M !

0(Γ(N)). We claim that yN has poles only at the cusps
1
1
, 1
2
, · · · , 1

N
of H/Γ(N) at that these are all simple poles. From this claim it follows that yN = RN(xN)

where RN is some rational function of degree N . In order to prove this claim, recall that xN has a pole
only at the cusp 1

N
(similar to 1

0
) of H/Γ(N). Therefore, yN has a pole at a

c
if and only if a

NC
is equivalent

to 1
0
. Writing a

Nc
in lowest terms (assuming gcd(a, c) = 1), we need(

a

gcd(a,N)
,

Nc

gcd(a,N)

)
≡ (±1, 0) mod N.

This implies that gcd(a,N) divides c, which means that gcd(a,N) = 1, and so a ≡ ±1 mod N . Next,
to find the order of yN at the cusp 1

k
, notice that

yN

(
τ

kτ + 1

)
= xN

(
1

N

τ

kτ + 1

)N

= xN

( τ
N

Nk τ
N
+ 1

)N

= xN

( τ
N

)N
= q−1/N + · · · ,

which shows that yN has a simple pole at 1
k
as claimed.

(2). Let the constants A,B,C,D be determined by the action of S on xN , i.e.

xN |S =
AxN +B

CxN +D
.

First, we have (
0 −1
N 0

)(
a b
c d

)(
0 −1
N 0

)−1

=

(
d − c

N

−Nb a

)
∈ Γ1(N),

if ( a b
c d ) ∈ Γ1(N). This means that xN(

−1
Nτ

)N is invariant under Γ1(N) so xN(
−1
Nτ

)N = FN(xN(τ)
N) where

FN is a rational function. We have already shown that

xN

( τ
N

)N
= RN(xN(τ)),

where RN is a rational function of degree N . Replacing τ with −N
τ

in this equation gives

xN
(−1

τ

)N
= RN

(
xN
(−N

τ

))
,

or (
AxN +B

CxN +D

)N

= RN

(
Ay

1/N
N +B

Cy
1/N
N +D

)
.
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Replacing τ by τ
N

in xN(
−1
Nτ

)N = FN(xN(τ)
N), we derive an equation of the form(

AxN +B

CxN +D

)N

= FN (yN) .

Comparing these last two equation and keeping in mind that RN is a rational function of degree N , we
see that FN must be a rational function of degree 1 and the assertion of the proposition holds.

Proposition 4.9.7.

Mk(Γ(3)) =
⊕
a+b=k
a,b≥0

C
η(3τ)3aη(τ/3)3b

η(τ)k
,

Mk(Γ(4)) =
⊕

a+b=2k
a,b≥0

Cη(4τ)2b−2aη(2τ)5a−bη(τ)−2a,

Mk(Γ(5)) =
⊕

a+b=5k
a,b≥0

C
η(5τ)15k

η(τ)3k
k 1
5
, 0
5
(5τ)ak 2

5
, 0
5
(5τ)b.

Proof. For N = 3, 4, 5, these bases for Mk(Γ(N)) follow from the observation that there is a fN(τ) ∈
M !

−1(Γ(N)) with a pole only at ∞. Specifically,

f3(τ) =
η(τ)

η(3τ)3
,

f4(τ) =
η(2τ)2

η(4τ)4
,

f5(τ) =
η(τ)3

η(5τ)15k 1
5
, 0
5
(5τ)5

,

with poles only at ∞ of orders 1, 2 and 5, respectively. It follows that if f ∈ Mk(Γ(N)), then fk
Nf ∈

M !
0(Γ(N)) and has a pole at ∞ of order at most k, 2k, 5k, respectively, and thus is a polynomial in xN

of at most this degree.

Let us prove the claim about f5. We first observe that η(5τ)5

η(τ)
∈ M !

2(Γ(5)) by Proposition 4.8.3 and

k 1
5
, 0
5
(5τ) ∈M !

−1(Γ(5)) by Proposition 4.7.5. Since, by Propositions 4.7.4 and 4.8.1,

1
5
orda

c

(
η(τ)3

η(5τ)15k 1
5
, 0
5
(5τ)5

,Γ(5)

)
=

3

24

gcd(1, c)2

1
− 15

24

gcd(5, c)2

5
− 5

4∑
i=0

(
frac

(
a+ic
5

)
2

)

=


−1 , a

c
≡ 1

5
mod Γ(5)

0 , a
c
≡ 2

5
mod Γ(5)

2 , otherwise

,

the claim for f5 is verified.

Exercise 4.9.8. Obtain and explain the formulas for the η quotients in Proposition 4.9.5.

Exercise 4.9.9. Show the following. Sections 4.4 and 4.5 will be helpful, and one should recall the
definitions of Γ2 and Γ3 in Section 2.11.

1. Γ2 (resp. Γ3) is the only normal subgroup of Γ(1) of index 2 (resp. 3).
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2. Γ
2
is freely generated by ( −1 −1

1 0 ) and ( 0 −1
1 −1 ), each of order 3.

3. Γ
3
is freely generated by ( 0 −1

1 0 ), ( 1 −1
2 −1 ) and ( 1 −2

1 −1 ), each of order 2.

4. The commutator subgroup Γ(1)′ of Γ(1) is Γ
2∩Γ3

, has genus 1, and is freely generated by ( 1 1
1 2 ) and

( 2 1
1 1 ).

5. A0(Γ
2) = C(

√
j − 1728).

6. A0(Γ
3) = C(j1/3).

7. A0(Γ
2 ∩ Γ3) = C(j1/3,

√
j − 1728)

4.10 Representations by x2 + y2

Proposition 4.10.1. For any integer k ≥ 1

1. Θ3(2τ)
2k ∈Mk(Γ1(4)).

2. dimMk(Γ1(4)) = ⌊k+2
2
⌋.

3. dimSk(Γ1(4)) = max(⌊k−3
2
⌋, 0).

Proof. (1). Exercise 2.12.5 gives

Θ3

(
aτ + b

cτ + d

)
=
( c
d

)
e

(
d− 1

8

)√
cτ + d Θ3(τ)

for any ( a b
c d ) ∈ Γϑ with d odd. Since(

2 0
0 1

)(
a b
c d

)(
2 0
0 1

)−1

=

(
a 2b
c
2

d

)
∈ Γϑ

if ( a b
c d ) ∈ Γ1(4), it follows that Θ3(2τ)

2 ∈M1(Γ1(4)).
(2). Proposition 4.9.7 gives

Mk(Γ(4)) =
⊕

a+b=2k
a,b≥0

Cη(4τ)2b−2aη(2τ)5a−bη(τ)−2a.

Since Mk(Γ1(4)) is the subspace of Mk(Γ(4)) consisting of forms with expansions in integral powers of q
and

η(4τ)2b−2aη(2τ)5a−bη(τ)−2a = qb/4(q4; q4)2b−2a
∞ (q2; q2)5a−b

∞ (q; q)−2a
∞ ,

we must have
Mk(Γ1(4)) =

⊕
a+b=2k
a,b≥0

b≡0 mod 4

Cη(4τ)2b−2aη(2τ)5a−bη(τ)−2a,

which implies that dimMk(Γ1(4)) = ⌊k+2
2
⌋.

(3). M5(Γ1(4)) is spanned by the three functions fi in the following table, where the orders are given
at the cusps. Note that the cusps of Γ1(4) are represented by 1

0
, 0

1
, and 1

2
, with widths 1, 4, and 1.
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fi
η(2τ)50

η(τ)20η(4τ)20
η(2τ)26

η(τ)12η(4τ)4
η(2τ)2η(4τ)12

η(τ)4

ord 1
0
(fi,Γ1(4)) 0 1 2

ord 0
1
(fi,Γ1(4)) 0 0 0

ord 1
2
(fi,Γ1(4))

5
2

3
2

1
2

If A ̸= 0, then f2+Af3 has a zero of lowest possible order at the two cusps 1
0
and 1

2
. Lets try to determine

A so that it also has a simple zero at the cusp 0
1
.

η(2τ)26

η(τ)12η(4τ)4
+ A

η(2τ)2η(4τ)12

η(τ)4

∣∣∣
S,5

= −
iAη

(
τ
4

)12
η
(
τ
2

)2
8192η(τ)4

−
iη
(
τ
2

)26
512η

(
τ
4

)4
η(τ)12

=
(A+ 16) + (64− 12A)q1/4 +O(q2/4)

8i
.

With A = −16, we see that there is a form f2 − 16f3 ∈ S5(Γ1(4)) with simple zeros at the regular cusps
and a zero of order 1

2
at the irregular cusp. Also, f2 − 16f3 has no zeros on H by the valence formula. It

follows that Sk(Γ1(4)) = (f2 − 16f3)Mk−5(Γ1(4)).

Proposition 4.10.2.

Θ3(2τ)
2 = 2ie10

4
, 1
4

= 1 + 4
∞∑
n=1
2∤n

(−1)
n−1
2

qn

1− qn
,

Θ3(2τ)
4 = 3e20

4
, 0
4
− 2e20

4
, 1
4
− 1e20

4
, 2
4

= 1 + 8
∞∑
n=1
4∤n

nqn

1− qn
,

Θ3(2τ)
6 = −2ie30

4
, 1
4
− 1

4

3∑
j=0

e31
4
, j
4

= 1 + 16
∞∑
n=1

n2qn

1 + q2n
− 4

∞∑
n=1
2∤n

(−1)
n−1
2

n2qn

1− qn
,

Θ3(2τ)
8 = 15

2
e40

4
, 0
4
− 1e40

4
, 1
4
− 1

2
e40

4
, 2
4
= 1 +

∞∑
n=1

n3qn

1− qn
·

{
12 , n ≡ 2 mod 4

16 , otherwise
.

4.11 Building congruence modular forms from Θ functions

Riemann’s Θ function with characteristic [ αβ ] ∈ R2×g is defined as

Θ [ αβ ] (z|Ω) =
∑
n∈Zg

e
(
1
2
(n+ α).Ω.(n+ α) + (z + β).(n+ α)

)
,

where z ∈ Cg and Ω ∈ Cg×g is symmetric with positive definite imaginary part so that the sum is
absolutely convergent. The Θ function without characteristics is defined as Θ(z|Ω) = Θ [ 00 ] (z|Ω). Since

Θ [ αβ ] (z|Ω) = e(α.(z + β) + 1
2
α.Ω.α)Θ(z + α.Ω + β|Ω),

the function with characteristics is no more general but is slightly more convenient to work with. We
will mainly make use of this function in the case z = 0 and Ω = τQ where τ is the usual variable in H
and Q is a symmetric positive definite matrix in Qg×g. In this case set ΘQ [ αβ ] (τ) = Θ [ αβ ] (τQ). When
the variable z is set to zero, it is commonly omitted from the notation so that Θ [ αβ ] (Ω) = Θ [ αβ ] (0|Ω).
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Note that Riemann’s Θ function doesn’t change much if the characteristics change in sign or by integer
vectors, i.e.

Θ
[ −α
−β

]
(Ω) = Θ [ αβ ] (Ω),

Θ
[
α+s
β+t

]
(Ω) = e(α.t)Θ [ αβ ] (Ω), s, t ∈ Zg.

Proposition 4.11.1. We have the following properties of Θ [ αβ ] (z|Ω).

1. Quasi-periodicity: For any s, t ∈ Zg,

Θ
[
α+s
β+t

]
(z|Ω) = e(α.t)Θ [ αβ ] (z|Ω),

Θ [ αβ ] (z + s.Ω + t|Ω) = e(α.t− β.s− 1
2
s.Ω.s− s.z)Θ [ αβ ] (z|Ω).

2. Parity for half-integer characteristics: If α, β ∈ 1
2
Zg, then

Θ [ αβ ] (−z|Ω) = (−1)4α.βΘ [ αβ ] (z|Ω).

3. For any A,B,C,D ∈ Zg×g such that G = ( A B
C D ) is a symplectic matrix, i.e.(

A B
C D

)(
0 I
−I 0

)(
A⊺ C⊺

B⊺ D⊺

)
=

(
0 I
−I 0

)
,

and AB⊺, CD⊺ have even diagonal, there is an eighth root of unity ϵ(G), depending only on G and
the choice of the square root such that

Θ [ αβ ]
(
z.(CΩ +D)−1|(AΩ +B)(CΩ +D)−1

)
= ϵ
√
det(CΩ +D)e

(
1
2
z.(CΩ +D)−1C.z

)
×e(−1

2
α.AB⊺.α− α.BC⊺.β − 1

2
β.CD⊺.β)Θ

[
α.A+β.C
α.B+β.D

]
(z|Ω)

Proof. Properties (1) and (2) are straightforward. It suffices to show (3) for α = β = 0⃗ since the Θ
function with characteristics is no more general than the function without. (3) is proven [17, page 168]
by showing that the group of symplectic matrices is generated by the three types(

A 0
0 A−⊺

)
, A ∈ GLg(Z) Θ(z.A⊺|A.Ω.A⊺) = Θ(z|Ω)(

I B
0 I

)
, B ∈ Zg×g Θ(z +B|Ω) = Θ(z|Ω) if B has even diagonal(

0 −I
I 0

)
Θ(z.Ω−1|Ω−1) =

√
det(−iΩ)e(1

2
z.Ω−1.z)Θ(z|Ω)

The transformations for the first two types are straightforward, and the third transformation follows from
the g-dimensional Poisson summation formula.

We first give the behavior of ΘQ [ αβ ] (τ) under the generators of Γ(1). Proposition 4.11.2 implies that
the functions {

ΘQ [ αβ ] (τ) | α, β ∈ 1
N
Zg mod 1, β.Q−1 ∈ 1

N
Zg
}

are transformed linear among themselves (in weight g/2) by Γ(1), as well as the same for the functions{
ΘQ [ α0 ] (τ) | α ∈ 1

N
Zg mod 1, α.Q ∈ Zg

}
.

Thus we obtain a homomorphism from Γ(1) to GLk(C) for some k. Proposition 4.11.3 shows that the
kernel of this homomorphism is a congruence subgroup, and we will work out explicit examples in the
case when Q corresponds to the quadratic form x2 + xy + y2 and other interesting forms as well.
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Proposition 4.11.2. Suppose that Q ∈ Zg×g has even diagonal and that N is a positive integer with
NQ−1 ∈ Zg×g. Then

ΘQ [ αβ ] (τ + 1) = e
(
−1

2
α.Q.α

)
ΘQ [ α

β+α.Q ] (τ),
√
detQ

(−iτ)g/2
ΘQ [ αβ ]

(
− 1

τ

)
= e(−α.β)

∑
r∈Zg/NZg

Q.r≡0 mod N

ΘQ

[
r
N
−β.Q−1

α.Q

]
(τ).

Proof. The transformation under T is straightforward. The transformation under S follows from the
g-dimensional Poisson summation formula.

Proposition 4.11.3. Suppose that Q ∈ Qg×g is symmetric and positive definite. If g = ( a b
c d ) ∈ Γ(1) is

such that bQ, cQ−1 are integral and abQ, cdQ−1 have even diagonals. Then,

ΘMQM⊺ [ αβ ] (τ) = ΘQ

[
α.M

β.M−⊺

]
(τ), M ∈ GLg(Z),

ΘQ−1 [ αβ ]
(
− 1

τ

)
= e(−α.β)

√
det(−iτQ)ΘQ

[
β
−α

]
(τ),

ΘQ [ αβ ]
(
aτ+b
cτ+d

)
= e

(
−1

2
abα.Q.α− bcα.β − 1

2
cdβ.Q−1.β

)
× ϵQ(c, d)(cτ + d)g/2ΘQ

[
aα+cQ−1.β
bQ.α+dβ

]
(τ),

Here the quantity ϵQ(c, d), depending only on c and d, is the eighth root of unity

ϵQ(c, d) =
cg/2

(cd)g/2

∑
n∈Zg/dZg

ζ−cn.Q−1.n
2d

=
(ic)−g/2

√
detQ

∑
n∈Zg/cZg

ζ+dn.Q.n
2c ,

where it is assumed that cdQ is integral with even diagonal in this last sum (so that it is well-defined).

Proof. The three transformations are a straightforward application of Proposition 4.11.1. The equality
for ϵQ(c, d) follows by letting τ → −d

c
in the third transformation an comparing the first terms of the

asmypotics, similarly to Proposition 2.9.1.

Proposition 4.11.4. Let all of the hypothesis of Proposition 4.11.3 hold as well as the assumption that
cdQ is integral with even diagonal. For an automorphism σ ∈ Aut(Q(ζn)), let x

σ denote σ(x) and xσ−1

denote σ(x)/x.

1. If Q is integral and has even diagonal, then

ϵQ(c, d) =
(√

det icQ
)σ−1

, where σ : ζc 7→ ζdc .

2. If Q is integral and d is odd, then

ϵQ(c, d) =
(√

det icQ
)σ−1

, where σ : ζ2c 7→ ζd2c.

3. If Q ∈ Z2×2 has even diagonal, then

ϵQ(c, d) =

{(
d

detQ

)
, detQ odd(

2 detQ
d

)
ζd−1
8 , detQ even

.

Proof. (1).
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4.12 Representations by x2+xy+ y2 and other quadratic forms

The quadratic form x2+xy+y2 arises from the case Q = ( 2 1
1 2 ). Let us save space notationally by writing

Θ [ αβ ] (τ) = Θ
[
α/3
β/3

]
(( 2τ 1τ

1τ 2τ )) for the time being. Propositions 4.11.3 and 4.11.4 give

Θ
[
0,0
0,0

]
|g(τ) =

(
d
3

)
Θ
[
0,0
0,0

]
(τ),

Θ
[
1,1
0,0

]
|g(τ) = ζbd3

(
d
3

)
Θ
[
1,1
0,0

]
(τ),

Θ
[
0,0
1,2

]
|g(τ) = ζac3

(
d
3

)
Θ
[
0,0
1,2

]
(τ),

(4.12.1)

for any g = ( a b
−3c d ) ∈ Γ0(3). These Θ functions, i.e.

Θ
[
0,0
0,0

]
(τ) =

∑
x,y∈Z2

qx
2+xy+y2 ,

Θ
[
1,1
0,0

]
(τ) =

∑
x,y∈ 1

3
+Z2

qx
2+xy+y2 ,

Θ
[
0,0
1,2

]
(τ) =

∑
x,y∈Z2

qx
2+xy+y2ζx−y

3 ,

are the three functions introduced in [4].

Proposition 4.12.1. For any integer k ≥ 1

1. Θ
[
0,0
0,0

]
(τ)k ∈Mk(Γ1(3)).

2. dimMk(Γ1(3)) = ⌊k+3
3
⌋.

3. dimSk(Γ1(3)) = max(⌊k−3
3
⌋, 0).

Proof. The proof of these results is similar to Proposition 4.10.1. The form in S6(Γ1(3)) with a simple
pole at 1

0
(width 1) and a simple pole at 0

1
(width 3) is η(τ)6η(3τ)6, by Proposition 4.8.3.

Proposition 4.12.2.
Θ
[
0,0
0,0

]
(τ)3 = Θ

[
1,1
0,0

]
(τ)3 +Θ

[
0,0
1,2

]
(τ)3

Proof. By (4.12.1), the three functions Θ
[
0,0
0,0

]
(τ)3, Θ

[
1,1
0,0

]
(τ)3, Θ

[
0,0
1,2

]
(τ)3 are all in M3(Γ1(3)). Since

this space has dimension 2 by Proposition 4.12.1, there must be a nontrivial linear relation between these
functions. This is easily found using the first three terms of the q-series expansions.

Proposition 4.12.3. Let χ be the odd character modulo 6. Then,

Θ
[
0,0
0,0

]
(τ) = 2

√
−3e 0

3
, 1
3
(τ) = 1 + 6

∞∑
n=1

χ(n)qn

1− qn
.

This concludes the study of the quadratic form Q = ( 2 1
1 2 ). We will now focus unimodular lattices,

and in particular on the E8 lattice. The E8 lattice is defined as

E8 = {(x1, . . . , x2) ∈ Z8 ∪ (Z+ 1
2
)8 | x1 + · · ·+ x8 ∈ 2Z}.
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A basis for the E8 lattice can be given as the columns of the matrix

A =



0 0 0 0 0 1 −1 −1/2
0 0 0 0 1 −1 −1 1/2
0 0 0 1 −1 0 0 1/2
0 0 1 −1 0 0 0 1/2
0 1 −1 0 0 0 0 1/2
1 −1 0 0 0 0 0 1/2
−1 0 0 0 0 0 0 1/2
0 0 0 0 0 0 0 −1/2


.

Note that detA = −1. The associated quadratic form is

Q8 = A⊺A =



2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 −1 0
0 0 0 0 −1 2 0 −1
0 0 0 0 −1 0 2 0
0 0 0 0 0 −1 0 2


.

Proposition 4.12.4. Let Q ∈ Zg×g be a symmetric positive definite matrix with even diagonal and
detQ = 1.

1. g ≡ 0 mod 8

2. ΘQ(τ) ∈Mg/2(Γ(1)).

Proof. (1). By Proposition 4.11.3 with α = β = 0 and M = Q−1, we have ΘQ−1(− 1
τ
) = ΘQ(− 1

τ
) =

(iτ)g/2ΘQ(τ) and ΘQ(τ + 1) = ΘQ(τ). Therefore,

ΘQ(τ) = (i/τ)g/2ΘQ(1− 1
τ
).

Iterating this three times gives ΘQ(τ) = (i/τ)g/2(iτ/(τ − 1))g/2(i(1 − τ))g/2ΘQ(τ). Since ΘQ(τ) clearly
does not vanish identically, this implies that(

i

τ

)g/2(
iτ

τ − 1

)g/2

(i(1− τ))g/2 = 1.

Setting τ = e(1
3
) and simplifying, we find that the left hand side is ζg8 . Thus, g ≡ 0 mod 8.

(2). This is now clear since ΘQ(τ) =
∑

n∈Zg q
1
2
n.Q.n has a q-series exansion in non-negative powers of

q.

We can derive from this proposition the fact that ΘQ8 [
0
0 ] (τ) ∈M4(Γ(1)), and so

E4(τ) = ΘQ8(τ)

=
∑
x∈Z8

qx
2
1+x2

2+x2
3+x2

4+x2
5+x2

6+x2
7+x2

8−x1x2−x2x3−x3x4−x4x5−x5x6−x5x7−x6x8
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4.13 Subgroups up to index 7: non-congruence examples

Recall that if a subgroup Γ of Γ(1) contains some Γ(N) then it is called a congruence subgroup. In this
section we are concerned with the elements of Γ(1) only up to their action on H, so we suppress the bars
over all of the subgroups of Γ(1). For any subgroup Γ and cusp α ∈ Q, let hΓ(α) denote the width of the
cusp α for Γ. Also, let Γc, called the congruence closure of Γ, be the smallest congruence subgroup of Γ(1)
that contains Γ. Clearly, Γ is a congruence subgroup if and only if Γ = Γc. The following proposition
relates Γ, Γc and level(Γ).

Proposition 4.13.1. Suppose [Γ(1) : Γ] < ∞. Set N = level(Γ) and let ϕ : Γ(1) → PSL2(Z/NZ) be
the map that reduces matrices modulo N . Let ϕ−1 take subgroups of PSL2(Z/NZ) to the corresponding
groups between Γ(1) and Γ(N). Then, Γc = ϕ−1(ϕ(Γ)).

Remark 4.13.2. There are much faster ways for testing if Γ is a congruence subgroup and computing
the congruence closure using presentations for PSL2(Z/NZ). See [20]. The main result for odd N is: Γ

is congruence if and only if (R2T
N−1

2 )3 acts trivially on the cosets Γ(1)\Γ. Recall that R = ( 1 0
1 1 ) and

T = ( 1 1
0 1 ).

Proposition 4.13.3. Suppose Γ is a congruence subgroup of level N . Then, if Γ ≥ Γ(l) then N | l.

Proof. Exercise.

The following Proposition, due to Wohlfart, says that the level of a congruence subgroup Γ is the
smallest l satisfying Γ ≥ Γ(l).

Proposition 4.13.4. Suppose Γ is a congruence subgroup of level N . Then, Γ ≥ Γ(N) and

N = lcm(hΓ(0), hΓ(1), hΓ(∞)).

Proof. Set m = lcm(h(0), h(1), h(∞)). Since the hypothesis is that Γ is a congruence subgroup, let l be
such that Γ ≥ Γ(l). Since Γ ≥ Γ(l) and the width of every cusp for Γ(l) is l, l must be a multiple of
each of these three widths h(0), h(1), h(∞), and so m | l. Let M = ( a b

c d ) ≡ I mod m be any matrix in
Γ(m). We must show that M ∈ Γ. By multiplying by powers of ( 1 m

0 1 ) and ( 1 0
m 1 ), which are in both Γ

and Γ(m), we may make some simplifying assumptions on M .

� gcd(d, l) = 1. Note that ( a b
c d )(

1 m
0 1 )

n1 = ( a b+amn1
c d+cmn1

). Since gcd(d,mc) = 1 by the assumption
M ∈ Γ(m), there is an integer n1 so that gcd(d+ cmn1, l) = 1 (for example, since d+ cmZ contains
infinitely many primes).

� b ≡ 0 mod l. Note that ( 1 m
0 1 )

n2( a b
c d ) = ( a+cmn2 b+dmn2

c d ). Since m | b and gcd(d, l) = 1, there is a n2

such that b+ dmn2 ≡ 0 mod l.

� c ≡ 0 mod l. Note that ( a b
c d )(

1 0
m 1 )

n3 = ( a+bmn3 b
c+dmn3 d ). Since m | c and gcd(d, l) = 1, there is a n3 such

that c+ dmn3 ≡ 0 mod l.

Therefore, we may assume M ≡ ( a 0
0 d ) mod l where ad ≡ 1 mod l. However, modulo l, M is congruent to

M ′, where M ′ = ( a ad−1
1−ad d(2−ad) ). Therefore, there is a matrix L ∈ Γ(l) ≤ Γ with M = LM ′. M ′ can be

written as the product of three matrices with trace 2 as

M ′ =

(
1 0

d− 1 1

)(
a 1− a

a− 1 2− a

)(
1 1− d
0 1

)
.

The last matrix in this product fixes ∞, and h(∞)|1 − d because d ≡ 1 mod m. This implies that the
last matrix is in Γ. Dido for the second matrix (= ( 1 0

1 1 )(
1 1−a
0 1 )( 1 0

1 1 )
−1) and the cusp 1. Dido for the first

matrix and the cusp 0.
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Finally, let N denote the level of Γ, that is, lcm({hΓ(α)}α∈Q). We have just seen that Γ ≥ Γ(m).
However, we have m|N by the definition of m, and N |m by Proposition 4.13.3. Therefore, N = m.

The number of subgroups of Γ and size of the conjugacy classes as computed in [18] are as follows.

index 1 2 3 4 5 6 7

No. of subgroups 1 1 4 8 5 22 42
No. of conjugacy classes 1 1 2 2 1 8 6

All of the subgroups Γ of Γ(1) with index ≤ 7 except Γ2∩Γ3 have genus 0. It turns out that if we assume
the existence of a Hauptmodul, xΓ, for each of these genus 0 subgroups Γ, we can find xΓ as an explicit
algebraic function of j. Let us illustrate with, for example, the conjugacy class of subgroups of index 7
in Table 4.1 with (ϵ∞, ϵ2, ϵ3) = (2, 1, 1) and cusp widths 5 + 2. We first fix x by putting its pole at the
cusp with width 5 (and setting its residue to be 1) and its zero at the cusp with width 0. Since there is
one elliptic point of each order for this subgroup, we have an equation of the form

j =
(x+ a1)(x

2 + a2x+ a3)
3

x2
= 1728 +

(x+ b1)(x
3 + b2x

2 + b3x+ b4)
2

x2
.

It is possible to determine the constants ai and bi algebraically by equating coefficients on powers of x.
It turns out that there are five distinct sets of solutions, corresponding to the five conjugate subgroups
that have a cusp width of 5 at ∞. In the table, x has been rescaled so that the defining relation with j
is rational.

Note that the groups of index 7 in the last four entries in Table 4.1 are not congruence subgroups
because the least common multiples of the cusp widths are 6, 10 and 12, respectively, and none of the
indexes [Γ(1) : Γ(6)] = 72, [Γ(1) : Γ(10)] = 360, and [Γ(1) : Γ(12)] = 576 is divisible by 7. Let Γ52 denote
the subgroup with cusp widths 5 + 2 and fundamental domain

1
1

◦ •

.

Note that once the locations of the two elliptic points are specified, there is only one way to pair the edges
while obeying the cusp widths of 5 and 2, so this defines a subgroup of Γ(1). Since Table 4.1 gives the
Hauptmodul x as a explicit algebraic function of j, it is a simple matter to obtain the q-series expansion
of x from that of j. For the group Γ52, we have

x(τ) = 7 · 72/5q−1/5 − 28 +
278

72/5
q1/5 − 2540

7 · 74/5
q2/5 +

116185

343 · 71/5
q3/5 +

2924644

2401 · 73/5
q4/5 + · · · ,

x(1− 1/τ) =
512000

343
√
−7

q1/2 +
69632000

117649
q +

488364032000

40353607
√
−7

q3/2 +
340869677056000

96889010407
q2 + · · · .

The function x(τ) is a Hauptmodul for Γ52. The Hauptmoduln for the other six groups in this conjugacy
class are x(1− 1/(τ + i)), and x(τ + j) for i = 0, 1 and j = 1, 2, 3, 4.
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µ (ϵ∞, ϵ2, ϵ3) cusps Hauptmoduln conj.

2 (1, 0, 2) 2 j = x2 + 1728 1

3 (1, 3, 0) 3 j = x3 1

3 (2, 1, 0) 2 + 1 j = (x+16)3

x
3

4 (1, 2, 1) 4 j = x(x+ 1)3 4

4 (2, 0, 1) 3 + 1 j = (x+27)(x+3)3

x
4

5 (1, 1, 2) 5 j = x3(x2 − 5x+ 40) 5

6 (1, 0, 0) 6 genus 1 1
6 (1, 0, 3) 6 j = −27x3(x3 + 16) 2
6 (1, 4, 0) 6 j = 27(x2 + 4)3 3

6 (2, 2, 0) 3 + 3 j = x3(x+12)3

(x+9)3
3

6 (2, 2, 0) 4 + 2 j = x3(x+8)3

(x+4)2
3

6 (2, 2, 0) 5 + 1 j = (x2+10x+5)3

x
6

6 (3, 0, 0) 2 + 2 + 2 j = (x2+192)3

(x2−64)2
1

6 (3, 0, 0) 4 + 1 + 1 j = (x2+48)3

x2+64
3

7 (1, 3, 1) 7 j = x(x2 + 7+7
√
−7

2
x+ −35+7

√
−7

2
)3 7

7 (1, 3, 1) 7 j = x(x2 + 7−7
√
−7

2
x+ −35−7

√
−7

2
)3 7

7 (2, 1, 1) 6 + 1 j =
384(747−1763

√
−3)(x+9)(x2+(6+

√
−3)x+ 1

2
(3+

√
−3))3

823543x
7

7 (2, 1, 1) 6 + 1 j =
384(747+1763

√
−3)(x+9)(x2+(6−

√
−3)x+ 1

2
(3−

√
−3))3

823543x
7

7 (2, 1, 1) 5 + 2 j = (x+125)(x2+5x−1280)3

823543x2 7

7 (2, 1, 1) 4 + 3 j = (x+432)(x2+80x−3888)3

−823543x3 7

Table 4.1: The subgroups with [Γ(1) : Γ] ≤ 7 and their Hauptmoduln

As Γ52 is non-congruence and has prime index in Γ(1), its congruence closure must be the full modular
group Γ(1). Since x is clearly not invariant under Γ(1), we have the q-series expansion of a modular
function that is not invariant under Γ(N) for any N (so in particular, it cannot be written in terms of
the usual q-products). There are a few things to notice about the q-series coefficients of the function x:

� The coefficients appear to have unbounded denominators. (The q-series expansions of the Haupt-
moduln for the congruence subgroups in Table 4.1 all have bounded denominators.)

� Any Galois extension of Q containing the q-series coefficients of x and its six conjugate is not an
Abelian extension.

Exercise 4.13.5. Set α = −1+
√
−7

2
. Recall from Table 4.1 that supposedly there are 14 congruence

subgroups of index 7 with (ϵ∞, ϵ2, ϵ3) = (1, 3, 1), whose Hauptmoduln x satisfy

j = x(x2 − αx− 21− 7α)3 or ᾱ in place of α.

Since these are congruence subgroups, we should be able to solve for x in terms of q-products. Let us first
fix two of these groups, Γ7 and Γ̃7, by the fundamental domains

0 6

◦ ◦ ◦•

, 0 6

◦ ◦ ◦ •

,
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respectively. The edge pairings for each of these fundamental domains are uniquely determined by the
locations of the elliptic points (shown with dots).

1. Show that Γ7 and Γ̃7 are congruence subgroups of level 7 by means of Proposition 4.13.1 via the
following steps.

(a) Show that Γ7 is freely generated by S, T 4ST−4, T 5ST−5, T 2ST−1

Show that Γ̃7 is freely generated by S, T 2ST−2, T 3ST−3, T 6ST−5.

(b) Let G and G̃ be the subgroups of PSL2(Z/7Z) ≃ Γ(1)/Γ(7) generated respectively by the two sets
of generators in (a) modulo 7. Show that G and G̃ have order 24 hence index 7 in PSL2(Z/7Z).

2. For j = 1, 2, 3, let uj(τ) = ±kj/7,0(7τ)η(7τ)3/η(τ), with the signs fixed by

u1(τ) = −q17/42(q; q7)∞(q6; q7)∞(q7; q7)∞/(q; q)∞,

u2(τ) = +q5/42(q2; q7)∞(q5; q7)∞(q7; q7)∞/(q; q)∞,

u3(τ) = +q−1/42(q3; q7)∞(q4; q7)∞(q7; q7)∞/(q; q)∞.

Show that u1η(τ)
4, u2η(τ)

4, u3η(τ)
4 ∈ S2(Γ(7)). This is in fact a basis by Theorem 4.2.3.

3. Show that  u1η
4

u2η
4

u3η
4

 |T =

 ζ47 0 0
0 ζ27 0
0 0 ζ17

 u1η
4

u2η
4

u3η
4

 ,

 u1η
4

u2η
4

u3η
4

 |S =
1√
−7

 ζ67 − ζ17 ζ57 − ζ27 ζ37 − ζ47
ζ57 − ζ27 ζ37 − ζ47 ζ67 − ζ17
ζ37 − ζ47 ζ67 − ζ17 ζ57 − ζ27

 u1η
4

u2η
4

u3η
4

 .

4. Let xi = ζ3i7 u
2
1 + ζ5i7 u

2
2 + ζ6i7 u

2
3 + α(ζ i7u1u3 + ζ2i7 u2u3 + ζ4i7 u1u2). Show that x0 is a Hauptmodul for

Γ7 ∩Γ3, which is a subgroup of index 21 with (ϵ∞, ϵ2, ϵ3) = (1, 9, 1). Hint: show that x0η
8 ∈ S4(Γ

7).
Recall also that η8 ∈ S4(Γ

3).

5. Show that x30 is a Hauptmodul for Γ7 and that the x3i are Hauptmoduln for the conjugates of Γ7.
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Chapter 5

Hecke Operators

5.1 Motivating Examples

Example 5.1.1. Set

δ(τ) = q(q; q)2∞(q11; q11)2∞ =
∞∑
n=1

anq
n,

θ(τ) =
∑
n,m

qm
2+mn+3n2

,

x(τ) =
δ(τ)

θ(τ)2
,

y(τ) =
q d
dq
log x(τ)

θ(τ)2
.

The functions x and y generate A0(Γ0(11)) and satisfy the relation [5],

y2 = 1− 20x+ 56x2 − 44x3.

Proposition 5.1.2. With an defined as in Example 5.1.1,

1. If gcd(m,n) = 1,
amn = aman.

2. Recursion on prime powers:

apn+1 = apnap −

{
0 , p = 11

papn−1 , p ̸= 11

3. Relation to number of Fp-points on the elliptic curve y2 = 1− 20x+ 56x2 − 44x3:

ap = −
p−1∑
x=0

(
1− 20x+ 56x2 − 44x3

p

)
, p ̸= 11.
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Example 5.1.3. Set

z = q
d

dq
log

η(17τ)3

η(τ)3
,

1− x
2x

=
1

4η(τ)2η(17τ)2

(∑
n,m

(eπim − eπin)q
1
4
n2+ 17

4
m2

)2

,

y =
2

z
q
d

dq
log x,

xz =
∞∑
n=1

anq
n.

The functions x and y generate A0(Γ0(17)) and satisfy the relation

y2 = 1− 16x− 66x2 − 48x3 − 127x4.

Proposition 5.1.4. With an defined as in Example 5.1.3,

1. If gcd(m,n) = 1,
amn = aman.

2. Recursion on prime powers:

apn+1 = apnap −

{
0 , p = 17

papn−1 , p ̸= 17

3. Relation to number of Fp-points on the elliptic curve:

ap = −
(
−127
p

)
−

p−1∑
x=0

(
1− 16x− 66x2 − 48x3 − 127x4

p

)
, p ̸= 2, 17.

Example 5.1.5. Set

x = q1/2
(q5; q5)3∞
(q; q)3∞

, y = q
(q, q4; q5)5∞
(q2, q3; q5)5∞

.

The function field of

Γ = {
(
a b
c d

)
∈ Γ(1)

∣∣∣ c ≡ 0 mod 5
d ≡ 1 mod 5
b+ c ≡ 0 mod 2

}

is generated by x and y and there is the relation

1

x2
=

1

y
− 11− y.

The coefficients of

q1/2(q; q)2∞(q5; q5)2∞ =
∞∑
n=1

anq
n/2

have nice multiplicative properties and satsify

ap = −
p−1∑
y=1

(
y−1

mod p − 11− y
p

)
, p ̸= 2.
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Example 5.1.6. Set
x = j(τ)1/3, y =

√
j(τ)− 1728.

The function field of Γ(1)′ = Γ2 ∩ Γ3 is generated by x and y and there is the obvious relation

y2 = x3 − 1728.

The coefficients of

q1/6(q; q)4∞ =
∞∑
n=1

anq
n/6

have nice multiplicative properties and satsify

ap = −
p−1∑
x=0

(
x3 − 1728

p

)
, p ̸= 2, 3.

Since the elliptic curve has complex multiplication, there is the simpler formula

ap =

{
0 , p ≡ 2 mod 3

−2a , p ≡ 1 mod 3, p = a2 + 3b2, a ≡ 1 mod 3
.

Can this formula for ap be obtained from

(q, q)∞ =
∑
n

(−1)nqn(3n−1)/2

(q, q)3∞ =
∑
m

(m+ 1
2
)(−1)mqm(m+1)/2

?

5.2 Definition of the Hecke operators

Recall the slash operator |
( a b
c d

),k
in weight k,

f |
( a b
c d

),k
(τ) =

(ad− bc)k−1

(cτ + d)k
f

(
aτ + b

cτ + d

)
.

Let

∆n = {
(
a b
c d

)
∈ Z2×2 | ad− bc = n}

be the set of matrices of determinant n. We let ∆1\∆n denote the equivalence classes of ∆n under the
action of the modular group (by multiplication on the left. It is not hard to see that

∆1\∆n = {
(
α β
0 δ

)
| αδ = n, 0 ≤ β < δ}.

It is also useful to consider the set of primitive matrices of determinant n.

∆∗
n = {

(
a b
c d

)
∈ Z2×2 | ad− bc = n, gcd(a, b, c, d) = 1}.

∆1\∆∗
n = {

(
α β
0 δ

)
| αδ = n, 0 ≤ β < δ, gcd(α, β, δ) = 1}.
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Proposition 5.2.1. Set g = ( n 0
0 1 ).

1. Γ0(n) = Γ(1) ∩ g−1Γ(1)g.

2. Let Γ(1) = ∪iΓ0(n)γi be a coset decomposition. Then

∆∗
n = Γ(1)gΓ(1) = ∪iΓ(1)gγi.

3. Γ(1) acts transitively (by right multiplication) on the cosets ∆1\∆∗
n.

4. The action of Γ(1) (by right multiplication) on the cosets ∆1\∆n is transivie within matrices of the
same content.

If f ∈ Ak(Γ(1)), the Hecke operator Tn is defined as

Tn(f) =
∑

g∈D1\Dn

f |g,k.

Proposition 5.2.2. If f =
∑

m amq
m ∈ Ak(Γ(1)), then

Tn(f) =
∑
m

qm
∑

d| gcd(m,n)

dk−1amn/d2,

and for prime p,

Tp(f) =
∑
m

(amp + pk−1am/p)q
m.

Proof.

Proposition 5.2.3. If f ∈ Ak(Γ(1)), then

1. Tm(Tn(f)) = Tmn(f) for gcd(m,n) = 1.

2. Tp(Tpr(f)) = Tpr+1(f) + pk−1Tpr−1(f).

3. Tm(Tn(f)) =
∑

d| gcd(m,n) d
k−1Tmn/d2(f).

Proof.

5.3 Eigenforms

5.4 Newforms
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Chapter 6

Modular Forms mod p

6.1 The structure of modular forms on SL2(Z) mod p

6.2 The congruences for p(n) mod 5,7,11 are the Unique Ra-

manujan Congruences

6.3 24n ≡ 1 mod 5a7b11c implies p(n) ≡ 0 mod 5a7⌊
b
2⌋+111c
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Chapter 7

Modular Equations and Singular Values

7.1 Modular equations for j

Proposition 7.1.1 (Classical modular equation). For any integer n ≥ 2 there is a polynomial Φn(X, Y )
of degree ϕ(n) = n

∏
p|n(1 + 1/p) in X and Y such that:

1. Φn(X, Y ) is irreducible.

2. Φn(X, Y ) is symmetric in X and Y .

3. Φn(X,X) has leading coefficient ±1 if n is not a square.

4. The zeros of Φn(X, j(τ)) occur exactly at the points

X = j

(
ατ + β

δ

)
,

αδ = n
0 ≤ β < δ
gcd(α, β, δ) = 1

.

Proof. ...

Proposition 7.1.2 (Canonical modular equation). For any integer n ≥ 2 there is an irreducible polyno-
mial Ψn(X, Y ) of degree ψ(n) in X and Y such that Φn(fn(τ), j(τ)) = 0, where

fn(τ) =

(
η(nτ)

η(τ)

) 24
(24,n−1)

.
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7.2 Modular equations for the Weber functions

Weber’s functions are defined as

γ3(τ) =
√
j(τ)− 1728 =

E6(τ)

η(τ)12

γ2(τ) = (j(τ))1/3 =
E4(τ)

η(τ)8

f(τ) = ζ−1
48

η
(
τ+1
2

)
η(τ)

f1(τ) =
η
(
τ
2

)
η(τ)

f2(τ) =
√
2
η (2τ)

η(τ)

Proposition 7.2.1.

γ3(τ) ∈M !
0(Γ(2)),

γ2(τ) ∈M !
0(Γ(3)),

f(τ)24, f1(τ)
24, f2(τ)

24 ∈M !
0(Γ(2)),

f(τ)3, f1(τ)
3, f2(τ)

3 ∈M !
0(Γ(16)),

f(τ), f1(τ), f2(τ) ∈M !
0(Γ(48)).

7.3 Quadratic Forms

Let n < 0 be a squarefree integer and consider the field K = Q(
√
n). The ring of integers in K can be

given as

OK =

{
Z+ Z

√
n , n ̸≡ 1 mod 4

Z+ Z−1+
√
n

2
, n ≡ 1 mod 4

.

Therefore, the discriminant of K is given as

disc(K) =

{
4n , n ̸≡ 1 mod 4

n , n ≡ 1 mod 4
. (7.3.1)

Definition 7.3.1.

1. A negative integer d is called a discriminant if d ≡ 0, 1 mod 4.

2. A negative integer ∆ is called a fundamental discriminant if it can be obtained from some squarefree
n by formula (7.3.1). These are the numbers ∆ such that

∆ ≡ 1 mod 4 and ∆ is squarefree

or ∆ ≡ 8, 12 mod 16 and ∆/4 is squarefree.

3. Any discriminant d can be written uniquely as d = f 2∆ where ∆ is a fundamental discriminant
and f > 0 is an integer. This f is called the conductor of the discriminant d.
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Definition 7.3.2. Associate with a triple of integers (a, b, c) such that a > 0,b2 − 4ac < 0 the following
objects

1. the positive definite quadratic form ax2 + bxy + cy2

2. the discriminant d = b2 − 4ac

3. τa,b,c =
−b+

√
d

2a
∈ H

4. fractional ideal λ(−b+
√
d

2
Z+ aZ) of the order d+

√
d

2
Z+ Z, for any λ ∈ K

5. the following operation of Z2×2 on quadratics forms

M ∈ Z2×2 : ax2 + bxy + cy2 7→ aX2 + bXY + cY 2 with

(
X
Y

)
=M

(
x
y

)
.

6. conjugation operation (a, b, c) = (a,−b, c)

Definition 7.3.3. 1. A quadratic form (a, b, c) is called reduced if

0 ≤ |b| ≤ a ≤ c and b ≥ 0 whenever a = |b| or a = c.

2. A quadratic form (a, b, c) is called primitive if gcd(a, b, c) = 1.

3. A quadratic form (a, b, c) is called real if (a,−b, c) is Γ(1)–equivalent to (a, b, c) and imaginary
otherwise. An equivalent characterization of real forms is those whose corresponding ideals square
to principal ideals.

Proposition 7.3.4. Every quadratic form is equivalent (under Γ(1)) to a reduced form, and no two
distinct reduced forms are equivalent. The real forms are precisely those lying on the even, odd, and free
edges (Definition 4.5.2), that is, those where j(τa,b,c) ∈ R.

Proof. The condition for (a, b, c) being reduced is exactly

|Re(τ)| ≤ 1

2
and |τ | ≥ 1 and Re(τ) ≤ 0 whenever |Re(τ)| = 1

2
or |τ | = 1.

for τ = −b+
√
d

2a
. This is exactly the fundamental domain for Γ(1).

Definition 7.3.5. Let H(d) denote the equivalent classes of primitive forms of a given discriminant d
under the action of Γ(1). Also let h(d) denote the size of H(d).

Proposition 7.3.6. h(d) <∞.

Proof. If (a, b, c) is a reduced form with discriminant d then we see b2 ≤ ac ≤ −d/3. There can only be
a finite number of forms satisfying this.

Example 7.3.7.

h(−163) = 1 H(−163) = {(1, 1, 41)}
h(−160) = 4 H(−160) = {(1, 0, 40), (5, 0, 8), (4, 4, 11), (7, 6, 7)}

83



7.4 Singular Values of the j Function

Proposition 7.4.1. For any discriminant d, the polynomial

Hj
d(X) =

∏
(a,b,c)∈H(d)

(
X − j

(
−b+

√
d

2a

))
has integer coefficients. Furthermore, if d = r2 − 4n for any integers r and n with n > 1, then Hj

d(X)
divides Φn(X,X) (the modular equation for j).

7.5 Class Invariants

7.5.1 γ2(τ)

Proposition 7.5.1. For gcd(3, n) = 1 The polynomial

Φγ2
n (x, γ2(τ)) =

∏
αδ=n
α,δ>0

gcd(α,β,δ)=1
β≡0 mod 3

0≤β<3δ

(
x− γ2

(
ατ + β

δ

))

is in Z[x, γ2(τ)]

Proof. The displayed set of functions is transitively permuted by Γ3. Since γ2(τ) is a generator of A0(Γ
3),

the coefficient of this polynomial must be polynomials in γ2(τ).

Example 7.5.2. Φγ2
2 (x, y) = x3 − x2y2 + 495xy + y3 − 54000.

Proposition 7.5.3. Suppose (A,B,C) is a quadratic form with gcd(3, A) = 1, B ≡ 0 mod 3, and
gcd(3, D) = 1. Then

Q(γ2(τA,B,C)) = Q(j(τA,B,C)).

Proof. Suppose that X = γ2(τA,B,C) is a root of Φγ2
n (X,X) = 0 for some n with gcd(A, 3n) = 1 and n ≡ 2

mod 3. We will show that, although X = γ2(τ) is a root of Φγ2
n (X,X) = 0, the quantities γ2(τ ± 1) are

not roots of Φγ2
n (X,X) = 0. As the roots of X3 − j(τ) = 0 are X = γ2(τ), γ2(τ ± 1), the polynomials

Φγ2
n (X,X)

X3 − j(τA,B,C),

as elements of Q(j)[X], have a gcd of degree 1, and hence determine X = γ2(τA,B,C) as an element of
Q(j(τA,B,C)).

Now suppose that gcd(3, A) = 1, B ≡ 0 mod 3, and gcd(3, D) = 1 as in the proposition. The
matrices that fix τA,B,C are of the form (

x −Cy
Ay x+By

)
,

for x, y ∈ R. If X = γ2(τA,B,C) is a root of Φγ2
n (X,X) = 0 then

aτ + b

cτ + d
=
ατ + β

δ
,
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for some ( a b
c d ) ∈ Γ3 and some α, β, δ as in Proposition 7.5.1. This means that(

x −Cy
Ay x+By

)
=

(
d −b
−c a

)(
α β
0 δ

)
=

(
dα dβ − bδ
−cα aδ − cβ

)
.

Let n denote the determinant of these matrices. Thus,

n = αδ = x2 +Bxy + ACy2.

Note also that gcd(x, y) = 1 since all of these matrices are primitive. Next, choose x and y so that
gcd(A, 3n) = 1 (this is always possible). As α is a divisor of n, x and Ay, we must have α = ±1, say
α = 1 and δ = n. Note also that y ̸≡ 0 mod 3 since n ≡ 2 mod 3, and so c ̸≡ 0 mod 3. Also,

By = an− d− cβ
≡ −(a+ d) mod 3

≡ 0 mod 3,

since 3 ∤ c =⇒ 3 | (a+ d) in the group Γ3. This means that it is necessary that

B ≡ 0 mod 3,

for γ2(τA,B,C) to be a root of Φn(x, x) = 0. In particular, the numbers γ2(τA,B,C ± 1) = γ2(τA,B∓2A,...) are
not roots of Φn(x, x) = 0.

Example 7.5.4. Let us continue with Φγ2
2 (x, y) = x3 − x2y2 + 495xy + y3 − 54000. Here

Φγ2
2 (X,X) = X4 − 2X3 − 495X2 + 54000

= (X − 20)(X − 12)(X + 15)2

The degree n = 2 represented by the following principal forms:

2 = x2 + y2 (A,B,C)= (1, 0, 1) D = −4
2 = x2 + 3xy + 4y2 (A,B,C)= (1, 3, 4) D = −7
2 = x2 + 2y2 (A,B,C)= (1, 0, 2) D = −8

One can compute that

gcd
X

(X4 − 2X3 − 495X2 + 54000, X3 − j) = (j2 − 990j + 26730000)X − (2j2 + 191025j).

Thus, the equation

γ2(τ) = j(τ)1/3 =
2j(τ)2 + 191025j(τ)

j(τ)2 − 990j(τ) + 26730000

holds for the three values τ = τ1,0,1, τ1,3,4, τ1,0,2. Indeed, the following table is easily verified from this
formula.

D τ j(τ) γ2(τ)

−4
√
−1 123 12

−7 −3+
√
−7

2
−153 −15

−8
√
−2 203 20

Example 7.5.5. As 4 ≡ 1 mod 3, the polynomial Φγ2
4 (X,X) = (X3 − 287496) (X3 + 3375)

2
has all

three roots in common with X3 = j and cannot be used to determine j1/3 as an element of Q(j).
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7.6 Singular Values of the Weber Functions

The polynomial Hj
d(X) defined in Section 7.4 has quite large coefficients. It turns out that modular func-

tions of higher level (e.g. j1/3) provide the same extensions of Q with much smaller defining polynomials.
Weber defined a class invariant f(τ) to be a modular function for which

Q(f(τa,b,c)) = Q(j(τA,B,C))

where (a, b, c) ranges over some set of representatives of H(d).

Definition 7.6.1. For any integer N let (a′, b′, c′) := [(a, b, c)]N denote any form equivalent to (a, b, c)
for which

gcd(a′, N) = 1 and b′ ≡ B mod 2N .

Proposition 7.6.2. For any primitive form (a, b, c), [(a, b, c)]N exists.

Proposition 7.6.3. With s = gcd(3, d) and (a, b, c) ∈ [H(d)]3, we have the class invariant

γ2(
−b+

√
d

2a
)s.

Proposition 7.6.4. With s = gcd(2, d) and (a, b, c) ∈ [H(d)]2, we have the class invariant

γ3(
−b+

√
d

2a
)s.

Proposition 7.6.5. Let (a, b, c) range over [H(d)]48. Set τ = −b+
√
d

2a
and s = gcd(3, d). Then, we have

the following table of class invariants. The d ≡ 5 mod 8 case is pure conjecture.

condition class invariant

−d/4 ≡ 0 mod 8 2−3sf1(τ)
8s

−d/4 ≡ 4 mod 8
(
2
a

)
2−3s/2f1(τ)

4s

−d/4 ≡ 2 mod 4
(
2
a

)
2−s/2f1(τ)

2s

−d/4 ≡ 1 mod 8
(
2
a

)
2−s/2f(τ)2s

−d/4 ≡ 5 mod 8 2−sf(τ)4s

−d/4 ≡ 3 mod 8 2−⌊s/3⌋f(τ)s

−d/4 ≡ 7 mod 8
(
2
a

)
2−s/2f(τ)s

d ≡ 1 mod 8 ζsa48 f2(τ)
s

d ≡ 5 mod 8, |d| < 300 f(τ∞)s

2
+ f(τ0)s

2
+ f(τ1)s

2
− 2

f(τ∞)s
− 2

f(τ0)s
− 2

f(τ1)s

In the case d ≡ 5 mod 8, we should set τi =
−bi+

√
4d

2ai
where

(a∞, b∞, c∞) = [( 2 0
0 1 )(a, b, c)]48 ,

(a0, b0, c0) = [( 1 0
0 2 )(a, b, c)]48 ,

(a1, b1, c1) = [( 1 1
0 2 )(a, b, c)]48 .

Example 7.6.6. We have h(−103) = 5 and

[H(−103)]48 = {(17, 769, 8698), (19,−767, 7742), (1, 1, 26), (23, 865, 8134), (29, 97, 82)}.

According to Proposition 7.6.5,

ζ1748 f2

(
−769+

√
−103

34

)
, ζ1948 f2

(
767+

√
−103

38

)
, ζ48f2

(
−1+

√
−103

2

)
,

ζ2348 f2

(
−865+

√
−103

46

)
, ζ2948 f2

(
−97+

√
−103

58

)
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are roots of x5 + 2x4 + 3x3 + 3x2 + x− 1. This is a much simpler polynomial than

Hj
−103(x) = x5 + 70292286280125x4 + 85475283659296875x3

+4941005649165514137656250000x2 + 13355527720114165506172119140625x

+28826612937014029067466156005859375,

although they generate the same splitting field.

7.7 Shimura reciprocity

In this section d is a negative discriminant, not necessarily fundamental, and o = (−b1 +
√
d)Z+Z is the

corresponding order, not necessarily maximal, of K = Q(
√
∆), where ∆ is the corresponding fundamental

discriminant.
The automorphism group of the whole modular function field (of every level) is discribed by GL2(Q̂).

The operation of this group on a given modular function f of level N with coefficients in Q(ζN), i.e.

f ∈ A0(Γ(N),Q(ζN)) := A0(Γ(N)) ∩Q(ζN)((q
1/N))

is as follows. Every matrix m ∈ GL2(Q̂) can be written as m = u.v where u ∈ GL2(Ẑ) and v ∈ GL+
2 (Q).

The representation is not unique, but this does not matter for the definition

fm(τ) = fu(vτ),

where vτ is the usual fractional–linear transformation, and fu has the following definition. First project
u modulo N to obtain a matrix ũ ∈ GL2(Z/NZ). This matrix ũ can be written as a product of matrices
of the form ( 1 0

0 δ ) and matrices in SL2(Z/NZ). The former matrices operate as ζN 7→ ζδN and the latter
operate via their lifts to SL2(Z). Shimura reciprocity is then the simple statement that, for any τ ∈ K∩H,
any modular function f with no pole at τ , and any idele z ∈ JK ,

f(τ)(z
−1,Kab/K) = fm(z)(τ),

where m(z) is the matrix representing K̂–multiplication with respect to the Q̂–basis {τ, 1}. Explicitly,

(mτ )p : K
∗
p → GL2(Qp)

sτ + t 7→
(
t+(τ+τ̄)s −τ τ̄s

s t

)
.

First, it turns out that an idele responsible for transforming j–values can be given by

zp =


a p ∤ a
−b+

√
d

2
p | a, p ∤ c

−b+
√
d

2
− a p | a, p | c

. (7.7.1)

The matrix in GL2(Q̂) corresponding to this z−1 by Shimura reciprocity applied to modular functions

evaluated at τ1 = −b1+
√
d

2
factors into u.v, where v = ( 1 (b1−b)/2

0 a
) ∈ GL+

2 (Q), and u ∈ GL2(Ẑ) has
components

up =


(

a
b−b1

2
0 1

)
p ∤ a(

−b1−b
2

−c
1 0

)
p | a, p ∤ c(

−b1−b
2

−a
b1−b

2
−a

1 −1

)
p | a, p | c

. (7.7.2)
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Theorem 7.7.1. Let a and b be o-ideals. Suppose o = −b1+
√
d

2
Z+Z, b = −b+

√
d

2
Z+ aZ, and σb is defined

by the Artin symbol (z−1, Kab/K) where z is the idele with components (7.7.1). Then,

j(o)σb = j(b),

∆(a)

∆(o)
∈ K(j(o)),(

∆(a)

∆(o)

)σb

=
∆(ab)

∆(b)

Theorem 7.7.2. The following are units in Q(j(o)).

Na12
|∆(a)|2

|∆(o)|2
=

∆(a)∆(a−1)

∆(o)2
for any o-ideal a, and

Na6
∆(a)

∆(o)
provided a2 = (Na)o,

[?]
∆(a)∆(b)

∆(o)∆(ab)
for any o-ideals a and b.

Proof. The first two displayed expressions are invariant under scaling a by principal ideals, so it suffices
to prove them when a = p is prime.

In addition to the idele (7.7.1), which moves j–values, it is useful to isolate those ideles which fix the
j–values. These will be those for which zp ∈ o∗p.

Theorem 7.7.3. Let o = τ1Z+Z with τ1 =
−b1+

√
d

2
be an order of K, and let f(τ) ∈ Q(ζN)((q

1/N)) have
level N . The action of Gal(Kab/K(j(o))) on f(τ1) can be identified with (o/No)∗ using

mτ1 : (o/No)∗ → GL2(Z/NZ)
sτ1 + t 7→ ( t−b1s −c1s

s t ) .

For any z̃ ∈ (o/No)∗, Shimura reciprocity becomes f(τ1)
z̃−1

= fmτ1 (z̃)(τ1). z̃ can be lifted to any idele z
for which zp ∈ o∗p, for all p and zp ≡ z̃ mod Nop for p | N .

7.8 Singular Values of the η Function

The goal here is to understand evaluations such as

η(
√
−5) = 2−3/45−1/4

(
1 +
√
5

2

)−1/8

π−1/4Γ(
1
20
)1/8Γ( 3

20
)1/8Γ( 7

20
)1/8Γ( 9

20
)1/8

Γ(11
20
)1/8Γ(13

20
)1/8Γ(17

20
)1/8Γ(19

20
)1/8

.

There is always a transcendental product of Γ functions and another algebraic factor where units appear.
In this section let d < 0 be a fixed discriminant and let ∆ and f = d/∆ be the associated fundamental

discriminant and conductor. Also, set h = h(d), let w be the number of roots of unity in Q(
√
∆), and

set χ(n) = (∆
n
) to be the usual Kronecker symbol. The Γ factor quantitiy Γd > 0 appearing in the

Chowla–Selberg formula satisfies

log(4π
√
|d|Γ4

d) =

|∆|∑
n=1

wχ(n)

2h(∆)
log Γ (n/|∆|) +

∑
pn||f

(1− p−n) (1− χ(p))
(1− p−1) (p− χ(p))

log p.
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Weber’s class invariants in Proposition 7.6.5 succeed in generating very small defining polynoimals.
Weber’s invariants fail to always be units and they also fail on discriminants = 5 (mod 8). The following
simple theorem, proved in Theorem 7.8.3 below where the conjugates of X1 over Q are given, provides
class invariants that are always units and directly evaluates the singular values of η. While the minimal
polynomial for X1 is quite large, it is frequently the case that a fractional power of X1 has a much smaller
minimal polynomial, as illustrated in Examples 7.8.4 and 7.8.5. Neither Weber’s units nor the units of
Theorem 7.7.2 enjoy the following full–rank property.

Theorem 7.8.1. Let (a1 = 1, b1, c1) be in the identity class in H(d) and define X1 to satisfy

η(−b1+
√
d

2
) = ζ−b1

48 (

√
|d|
2

)−1/4X
1/(24h)
1 Γ

1/h
d .

Then, X1 ∈ Q(j(−b1+
√
d

2
)), and for each b ∈ H(d) we will have a Q–conjugate Xb. The set of Xb for real

b and |Xb|2 = XbXb̄ for the imaginary pair b, b̄ generate a system of units of full rank.

For much of this section, a modified domain for the reduced forms will be more convenient. We
take the usual fundamental domain but map the arc |τ | = 1, π/4 < arg τ < π/3 to ℜ(τ) = −1/2 by
τ 7→ −1/(τ + 1). The resulting new definition of reduced will be called reduced ′.

b = a b = 0

c = a

(a,b,c) (a,-b,c)

Figure 7.1: τa,b,c ∈ H for reduced (left, usual domain of Γ(1)) and reduced ′ (right) forms (a, b, c)

Define a modified η function as
η̃(τ) = Im(τ)1/4η(τ).

The point of this slight modification is that now the absolute value remains invariant under SL2(Z):

η̃(τ + 1) = ζ24η̃(τ), η̃(−1/τ) = (−τ/τ̄)1/4η̃(τ). (7.8.1)

Also, set η̃a,b,c = η̃(τa,b,c) and ja,b,c = j(τa,b,c), etc. We will almost exclusively use the identity form in
H(d) in the form (a1 = 1, b1, c1). Hence, η̃1 and j1 etc. will denote the values of these functions at the
corresponding τ1,b1,c1 = (−b1 +

√
d)/2.

Our first task is to resolve the unspecified argument of the η–product in the Chowla–Selberg formula.

Proposition 7.8.2. Fix a set of {(a, b, c)} of representatives of H(d). There exists a 48th root of unity
ζk48 and a µ ∈ Q(

√
d) of absolute value one (both depending on the choice of the {(a, b, c)} ) with∏

(a,b,c)∈H

η̃a,b,c = ζk48µ
1/4Γd.

With the reduced ′ set of representatives we may take µ = 1 and k = −
∑

(a,b,c)
b
a
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Proof I. Because of (7.8.1), the truth of this proposition is independent of the choice of representatives
of H(d), hence we may take them to be reduced ′. The Chowla–Selberg formula gives∏

(a,b,c)∈H

|η̃a,b,c| = Γd.

For the pair of imaginary forms (a, b, c) and (a,−b, c) we have η̃a,b,c = η̃a,−b,c, so |η̃a,b,cη̃a,−b,c| = η̃a,b,cη̃a,−b,c.
Next, the real forms split into two case depending on their location in the fundamental domain. On b = 0
(i.e. ℜ(τ) = 0) we clearly have |η̃a,b,c| = η̃a,b,c. On b = a (i.e. ℜ(τ) = −1/2) we have |η̃a,b,c| = ζ48η̃a,b,c.

Proof II. Squaring both sides of the Chowla–Selberg formula and using the fact that η̃a,b,c = η̃a,−b,c gives∏
(a,b,c)∈H

η̃a,b,c
∏

(a,b,c)∈H

η̃a,−b,c = Γ2
d.

Since the map (a, b, c) 7→ (a,−b, c) is inversion in the class group, each form (a,−b, c) is equivalent to
some (a′, b′, c′) from the original choice of representatives of H. Furthermore, in each case, by (7.8.1), we

have an equation of the form ηa,−b,c = ζa,b,cµ
1/4
a,b,cη̃a′,b′,c′ . Multiplying these all together and taking some

square root gives the result with µ1/8 in place of µ1/4. To show that the quantity under the eighth root is
a square, we first notice that it suffices to prove the result for the reduced set of representatives; any set
of representatives transforms to this modulo a 24th and a fourth root by (7.8.1). With this reduced set
of representatives, the reciprocal transform in (7.8.1) is only applied with τ on |τ | = 1, so the quantity
τ/τ̄ is a square.

Theorem 7.8.3. Fix a set of {(a, b, c)} of representatives of H with (a1 = 1, b1, c1) being the identity.
There exists a polynomial f(x) ∈ Q[x] independent of the choice of representatives, and for each form
(a, b, c), there exists a µa,b,c ∈ K := Q(

√
d) (depending on the choice of representative) of absolute value

one with

(Xa,b,c :=) (−1)b1hµ6
a,b,c

η̃24ha,b,c

Γ24
d

= f(ja,b,c).

Furthermore, these h quantities Xa,b,c are roots of a monic irreducible polynomial over Z with constant
coefficient (−1)h. The value of X corresponding to the identity form X1 is a positive real. If (a, b, c) is
reduced ′ and real (i.e. b = 0 or b = a), then µ6

a,b,c = 1.

Proof. We can assume wlog that the forms (ai, bi, ci) are reduced ′. Let a1, . . . , ah be the corresponding

ideals −bi+
√
d

2
Z + aiZ with o = a1 being the identity. The norm of ai is given by Nai = ai, and we use

the following definition of the ∆ function on lattices:

∆(ω1Z+ ω2Z) = ω−12
2 η24(ω1

ω2
) = ( ω̄2

ω2
)6ℑ(ω1ω̄2)

−6η̃24(ω1

ω2
) (7.8.2)

This is independent of the choice of basis (ω1, ω2) of the lattice and homogeneous of degree −12 as
∆(λa) = λ−12∆(a). By (7.8.2) and by Proposition 7.8.2, with k :=

∑
i bi/ai, we have the equalities

η̃24ai,bi,ci = (

√
|d|
2
ai)

6∆(ai),

(−1)kΓ24
d =

∏
i

(

√
|d|
2
ai)

6∆(ai).

Thus, if we set µa1,b1,c1 = 1, then X1 has the representation

X1 = (−1)b1h+k ∆(o)h∏
i a

6
i∆(ai)

= (−1)b1h+k
∏
i

Na−6
i

∆(o)

∆(ai)
,
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and so by Theorem 7.7.1, X1 ∈ K(j1), and by the first two assertions of Theorem 7.7.2, |X1| is a unit.

Since X1 is real and j1 is real, X1 ∈ Q(j1) and X1 is a unit. Now let b = −b+
√
d

2
Z+ aZ correspond to any

one of the reduced ′ forms (a, b, c), and we will purposely confuse (a, b, c) and b notationaly. Theorem
7.7.1 also gives a σ = σb ∈ Gal(Kab/K) with

jσ1 = j(b), and Xσ
1 = Xb = (−1)b1h+k ∆(b)h∏

i a
6
i∆(aib)

.

For each i, the ideal aib is equal to some other aj modulo principal ideals as this is the definition of the
class group. Hence, for an accordingly defined operation i + b on the indicies of these ideals, we have
aib = λiai+b for some λi ∈ K. Inserting this into the last equation gives

Xb = (−1)b1h+k ∆(b)h∏
i a

6
iλ

−12
i ∆(ai+b)

= (−1)b1h+k
∏
i

λ12i
∆(b)h∏
i a

6
i∆(ai)

= (−1)b1h
∏

i λ
12
i

a6h
η̃24ha,b,c

Γ24
d

.

We should therefore take µb = a−hΠiλ
2
i , which is clearly an element ofK. Since a = Nb and λio = aiba

−1
i+b,

we see that µb is a generator of the principal ideal b2h/Nbh = bh/b̄h, and therefore that |µb| = 1. This
formula µb = λb/λ̄b where bh = λbo requires care, as explain below; only µ6

b is uniquely determined. For
non-principle reduced ′ real forms b, for which b2 = (Nb)o, it must be that h is even and therefore that
µ6
b = 1.
As for the constant coefficient, at this point all assumptions about reducedness of forms can be

dropped and a1, . . . , ah can be an arbitrary set of representatives of H(d). Similary, b can be any o–ideal.
For a principal ideal λo, let [λo] denote a generator λ. As K contains at worst 12th roots of unity, only
[a]12 is well–defined. The formula for Xb and the Chowla–Selberg formula take the forms

(−1)b1hXb = (

√
|d|
2

)6hΓ−24
d [bh]12∆(b)h,

1 = (

√
|d|
2

)12hΓ−48
d [Πia

2
i ]

12Πi∆(ai)
2 for any h,

−1 = (

√
|d|
2

)6hΓ−24
d [Πiai]

12Πi∆(ai) for odd h.

In order to prove these, it is enough to notice that the right hand sides are functions of only the ideal
classes and that the formulas are true when the ideals are reduced ′ as above. The h/2th and the hth

powers of the last two equations show that ΠiXai = 1 when h is even and odd, respectively.

Example 7.8.4. For discriminant −103, the five quantities

−
η̃1201,1,26

Γ24
−103

, −
(
−5 +

√
−103

−5−
√
−103

)6
η̃1202,1,13

Γ24
−103

, −
(
5 +
√
−103

5−
√
−103

)6
η̃1202,−1,13

Γ24
−103

,

−
(
5 +
√
−103

5−
√
−103

)12
η̃1204,3,7

Γ24
−103

, −
(
−5 +

√
−103

−5−
√
−103

)12
η̃1204,−3,7

Γ24
−103

are roots of

x5 − 18121127630x4 + 152440968277082156635x3

−13699549343369520851635x2 + 609930147246371866050755x− 1.

Comparing with Example 7.6.6 , we see that this Hη
−103 does better than Hj

−103 on account of the constant

coefficient ±1 but is still much larger than Weber’s. However, X
1/24
1,1,26 becomes comparable to Weber’s as

it is a root of
x5 + 6x4 + 15x3 + 16x2 + 8x− 1.
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Example 7.8.5. For discriminant −972, X1/72
1,0,243 is a class invariant.

X
1/72
1,0,243 =

η̃31,0,243

Γ
1/3
−972

= (32/3 − 2)(31/3 − 21/3)(22/3 − 31/3)
34/3

(1 + 21/3)4
(=: x)

With α : 21/3 7→ ζ32
1/3 and β : 31/3 7→ ζ33

1/3 as the generators of Gal(Q(
√
−3, j1,0,243)/Q(

√
−3)),

ζ−1
4

η̃34,2,61

Γ
1/3
−972

= xα, ζ4
η̃34,−2,61

Γ
1/3
−972

= xα
2

, ζ712
η̃39,6,28

Γ
1/3
−972

= xβ, ζ−7
12

η̃39,−6,28

Γ
1/3
−972

= xβ
2

ζ12

(
−6 +

√
−972

−6−
√
−972

)3/4
η̃37,6,36

Γ
1/3
−972

= xαβ
2

, ζ−1
12

(
6 +
√
−972

6−
√
−972

)3/4
η̃37,−6,36

Γ
1/3
−972

= xα
2β,

ζ−1
12

(
9 +
√
−972

9−
√
−972

)3/4
η̃313,4,19

Γ
1/3
−972

= xαβ, ζ12

(
−9 +

√
−972

−9−
√
−972

)3/4
η̃313,−4,19

Γ
1/3
−972

= xα
2β2

.

Before trying to predict if X
1/72
1 is a class invariant, we should first predict using Shimura reciprocity

which (hopefully small) integral power of X
1/24
1 is a class invariant. To do this, we will need the functions

f(( α β
0 δ

), τ) =
√
α
η(ατ+β

δ
)

η(τ)
, α, δ > 0, gcd(α, β, δ) = 1

For a fixed determinant αδ = n, these functions with the β chosen unique modulo δ are permuted up to
24th roots of unity by Γ(1), hence the 24th powers of these functions, which are ψ(n) in number, are the
roots of a monic polynomial over Z[j(τ)]. With the reduced ′ representatives (a, b, c), we can write

X
1/24
1 =

∏
(a,b,c)

a1/4ζb1−1a=b
48

f(( 1 (b1−b)/2
0 a

), τ1)
(7.8.3)

where the product excludes the identity form (a1 = 1, b1, c1), and τ1 = τa1,b1,c1 . The 48th roots of unity
and the f functions present no problems for Shimura reciprocity: they are modular functions of level 48a
evaluated at τ1. What needs extra attention is the fourth root of the integer Πa =: t. Set K = Q(

√
d).

For t ∈ Q, we have

t1/4 ∈ Kab ⇔
|t| ∈ Q2, or
−d ∈ Q2, or
−d|t| ∈ Q2.

In the case t1/4 ̸∈ Kab, we simply must square both sides and consider powers of X
1/12
1 . When it is in

Kab, we need formulas for its conjugates under Gal(Kab/K). This is trivial in the first case as it is solved
by the Kronecker symbol: we have explict representations

√
s ∈ Q(ζ4|s|) such as

√
5 = ζ0

2

5 + ζ1
2

5 + ζ2
2

5 + ζ3
2

5 + ζ4
2

5√
−7 = ζ0

2

7 + ζ1
2

7 + ζ2
2

7 + ζ3
2

7 + ζ4
2

7 + ζ5
2

7 + ζ6
2

7 ,

and the action of σ : ζ 7→ ζk is given by
√
s
σ
=
(
s
k

)√
s.

The third case also poses no problem as the essential quantity is the square root of a element of K.
For this we have

√
τ = ζ8η(−1/τ)/η(τ) and the action follows from Shimura reciprocity.

The second case of K = Q(i) presents the greatest difficulty. In one approach, analogous to
√
s ∈

Q(ζ4|s|), t
1/4 can be expressed explicitly as a modular function of level 48|t| (this needs to be checked,
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the unambitious bound 256|t|3 is used below) evaluated at i, and the action of Kab/K on t1/4 can be
determined via Shimura reciprocity:

21/4 = ζ−1
48

η( i+1
2
)

η(i)
,

31/4 = ζ−1
12

η( i+1
3
)2

η(i)2
η(3i)

η(3i−1
2

)

η( i+1
2
)

η(i)
,

51/4 =
x5(i) + x5(i)

−1

2

η( i
5
)

η(i)
, x5 defined by (4.9.2).

However, there is no obvious pattern here and the approach quickly becomes intractable. Class field

theory: the idele that we are using for mapping j1 to ja,b,c via j
(z−1,Kab/K)
1 = ja,b,c is given by (zp)p where

the components are defined in (7.7.1). One can then find an x ∈ K∗ with xz−1 ≡ 1 mod c, where
modulus c can be taken as −256t3 since this is the discriminant of the polynomial X4− t. Mapping xz−1

to an ideal (xz−1) via

(xz−1) =
∏
p

pordp(xz
−1
p )

gives an ideal prime to c, hence the action can be determined from the relevant Frobp(K(t1/4)/K) (only
p prime to c are relevant).

We now have formulas for the conjugates of X
1/24
1 (or X

1/12
1 in rare cases when t1/4 ̸∈ Kab) assuming

it lies in Q(j1). If the assumption is wrong, the corresponding monic polynomial of degree h will not have

integer coefficients, and we try again with a higher power of X
1/24
1 . This must eventually succeed because

X1 ∈ Q(j1). In order to be completely rigorous numerically, it must be pointed out that non-integrality
can be detected and proven, but integrality cannot be proven numerically. Therefore, when the numerics
strongly suggest that the coefficients are integers, we can invoke Theorem 7.7.3 to most likely prove that
the given power of X

1/24
1 is in Q(j1); we just need to check the action of the finite group o/No where N

is the level of the function in (7.8.3).
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Chapter 8

Hypergeometric Functions

8.1 Basic Properties of the 2F1(x) and 3F2(x) Series

Proposition 8.1.1. The formula (4.9.3) is correct for N = 2, 3, 4, 5 at least for −iτ > 0 (so j(τ) > 1728).

8.2 Jacobi’s Inversion Formula and Generalizations

8.3 Solution of the General Quintic by Modular Functions

From Proposition 4.9.5,

j =
(x20 + 228x15 + 494x10 − 228x5 + 1)3

x5(x10 − 11x5 − 1)5
(8.3.1)

where j is the j function and x5 is the Hauptmodul for Γ(5) defined in (4.9.2) (the reciprocal of the
Rogers-Ramanujan continued fraction). The solution for x as a function of j in this equation is the basic
irrationality that can be used to resolve the simple group A5/1 in the normal series

1 ◁ A5 ◁ S5

for S5. The factor group S5/A5 ≃ Z2 corresponds to taking the square root of the discriminant of the
quintic.

Proposition 8.3.1. Let F = Q(a, b, c, ζ5). The splitting field of the quintic X4 + 5αX2 + 5βX + γ is
F (
√
D, x) where D is the discriminant of the quintic and

x =

j
1
60 2F1

(
− 1

60
, 29
60

4
5

∣∣∣1728j

)
j−

11
60 2F1

( 11
60
, 31
60

6
5

∣∣∣1728j

)
and j is some element of F (

√
D).

Proof. Let X0, . . . , X4 be the roots of the quintic, and let
√
D =

∏
i<j(Xi − Xj) denote a fixed square

root of the discriminant (D is not a square in F ). Then, Gal(F (X0, . . . , X4)/F (
√
D)) ⊆ A5.

Let I60 denote the group of Möbius transformation on C∞ giving the 60 symmetries of the regular
icosahedron. We have already seen

I60 ≃ Γ(1)/Γ(5) ≃ A5,

with the correspondence on generators given by
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element of I60 element of Γ(1)/Γ(5) element of A5

x 7→ ζ−1
5 x T Γ(5) τ = (01234)

x 7→ ϕx−1
x−ϕ

S Γ(5) σ = (12)(34)

,

where ϕ = 1+
√
5

2
and ϕ̄ = 1−

√
5

2
. For any π ∈ A5, let Mπ denote the corresponding element of I60. Set (for

i = 0, . . . , 4)

ti =
4∑

j=0

ζ ij5 Xj.

Then, the action of A5 on the ti is

τ


t1
t2
t3
t4

 =


ζ45 0 0 0
0 ζ35 0 0
0 0 ζ25 0
0 0 0 ζ15




t1
t2
t3
t4

 ,

σ


t1
t2
t3
t4

 =
1√
5


1 −ϕ̄ ϕ −1
−ϕ̄ −1 1 ϕ
ϕ 1 −1 −ϕ̄
−1 ϕ −ϕ̄ 1




t1
t2
t3
t4

 .

Next, note that that vanishing of the coefficients of X4 and X3 gives 0 = t0 = t1t4 + t2t3, and set

x = −t2
t1

= +
t4
t3
,

x̄ = +
t3
t1

= −t4
t2
.

(8.3.2)

The action of A5 on x and x̄ is given by

τ(x) = ζ−1
5 x, σ(x)=

ϕx− 1

x− ϕ
,

τ(x̄) = ζ−2
5 x̄, σ(x̄)=

ϕ̄x̄− 1

x̄− ϕ̄
.

(8.3.3)

This means that the corresponding values of j and j̄ (see (8.3.1)) are fixed by σ and τ , hence ele-
ments of F (

√
D). Since x was defined in terms of the Xi rationally over F , we have F (

√
D, x) ⊆

F (X0, X1, X2, X3, X4).
In order to establish the proposition, we must show that each Xi can be obtained as an element of

F (
√
D, x). Once we know x and x̄, we know the ratios of the ti by (8.3.2). Hence the ratios of the roots

Xi are known since they are the inverse Fourier transform of the ti and t0 = 0. Once we know the ratios
of the roots we know the roots because of the equation

1

X0

+
1

X1

+ · · ·+ 1

X4

= −5β

γ
,

so it suffices to demonstrate that x̄ is an element of F (
√
D, x). The reason for this lies in (8.3.3). Every

transformation in I60 is defined over Q(ζ5). Therefore, for a given M ∈ I60, if M denotes M with the
automorphism ζ5 7→ ζ25 applied, then we have

π(x) =Mπ(x) =⇒ π(x̄) =Mπ(x̄), π ∈ A5, (8.3.4)
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since this holds on generators. Now let M1, · · · ,M60 denote the elements of I60 so that {Mi(x)}i is a list
of conjugates of x under A5. Since (8.3.1) has disinct roots as long as j ̸= 0, 1728,∞, this list contains 60
distinct elements. From (8.3.4) we see that {Mi(x)}i and {M i(x̄)}i are permuted identically under A5,
that is

π(Mi(x)) =Mj(x) =⇒ π(M i(x̄)) =M j(x̄), π ∈ A5.

This means that the solutions for the ak in the linear system

M i(x̄) =
60∑
k=1

akMi(x)
k−1, i = 1, . . . , 60

are all fixed by A5 hence elements of F (
√
D).

Remark 8.3.2. It is possible to be much more explicit about the relationship between x and x̄. In fact,
we have √

x11 − 11x6 − x√
j − 1728

(7x5 − 1)x̄+ x7 + 7x2

(x13 + 39x8 − 26x3)x̄− 26x10 − 39x5 + 1
∈ F (

√
D).

See [7].

Remark 8.3.3. This gives a solution to quintics with a missing x4 and x3 term. Unfortunately, it is
not possibly to transform the general quintic to this form without introducing an accesory irrationality
of degree 2. The modular equation (8.3.1) is simply too rigid to support a rational transformation in
general. In a similar fashion, seventh degree equations with groups of order 168 can be resolved with the
basic irrationality

x =

j
1
42 3F2

(
− 1

42
, 13
42
, 9
14

4
14
, 6
14

∣∣∣1728j

)
j−

5·2
42 3F2

( 5
42
, 19
42
, 11
14

5
14
, 8
14

∣∣∣1728j

)2

j−
17·3
42 3F2

( 17
42
, 31
42
, 15
14

9
14
, 10
14

∣∣∣1728j

)3 .

Here, the degree of the accessory irrationality need to transformation the general seventh degree of order
168 to this form is now four.

96



Chapter 9

Mock Modular Forms
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