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Chapter 1

Introduction

The generating functions for many interesting combinatorial objects turn out to be modular forms.

1.1 Partitions and the n function
We have

=(1+q+ +¢+ )+ +d+E+ )+ P+ P+ P+ )

=> pn)q",

where p(n) is the number of partitions of n. We have the properties

e p(bn+4) =0 mod 5

(45 9) oo

e p(Tn+5)=0 mod 7
e p(1ln+6) =0 mod 11
e p(59*13n + 111247) = 0 mod 13 (see [3])

The three primes 5,7, 11 are unique in this way. Similar congruences hold at powers of these primes.

1.2 Sums of squares and the 6 function

Set
n2
0(r)=> q".
nez
Then, the generating function for #{(z1,...,zx)|n = z?+- - -+x}}, which is the number of representations

of n by the sum of k squares, is 8(7)*. If x4 is the non-trivial character modulo 4 and 4|c and ad —bc = 1,
will we see that 0 satisfies the weight 1/2 relation

0 (ZZIS) = (5) Xa(d)™*Ver +db(7),

and characterize all functions that satisfy even powers of this functional equation. This leads to and easy
proof of

{(z,y) € Z*|In = 2* + ¢y*} = 4ZX4(d)‘

dln



Similar formulas exists for other 8 functions.

{(x,y) €Z’In=2" + 2y +y°} =6 _ xs(d)
dln

1.3 Ramanujan’s 7 Function

Define 7(n) by

oo

) = qlg; )2 =) 7(n)g

The following properties were observed by Ramanujan.

e 7(mn) =7(m)r(n) for (m,n) =1

n(r

o T(P"1) = 7(0")7(p) — " ()

T(p) < 2p'/?
e 7(n) = o11(n) mod 691
The weight 12 relation is satisfied by n(7)?*

. (‘” * b>24 — (er +d)t2g(r)*.

ct +d

The first two are equivalent to the Euler product

= 7(n 1
f(s) :Z T(ls> :H 1—7(p) 11-2s’

— P +p

and the weight 12 transformation formula gives the reflection formula

f(s)(s)  f(12—s)I(12 — s)‘

(27T)S (27T)12fs

1.4 Mock Modular Forms

By considering the Durfee square, we have

n2

Ly o

(@D = (@0)7

which is essentially a (weak) modular form of weight —1/2. The function

n=0

turns out to not be modular, but can be made modular by adding some non-holomorphic function to it.
Set

F(2) = ¢ f(242) +\/_/ Z%n dr.

If ad — bc = 1 and 144|c, we have

ar +b
F
(c7’—|—d)

(%C) Xa(d) "V 2Ver + dF (r).

5



1.5 Special Values of the ;7 Function

Let K = Q(v/—d) be an imaginary quadratic field and let Z + Zt be its ring of integers. Then, j(7) is
an algebraic integer of degree h(—d) over Q, and K(j(7)) is the maximal unramified Abelian extension

of K.



Chapter 2

Elliptic Functions and Basic Modular
Forms on Sly(Z)

2.1 Theory of Elliptic Functions

Definition 2.1.1. Let wy,ws € C with Im(w;/ws) > 0. An elliptic function modulo Zw, + Zws is a
meromorphic function C — C satisfying

f(2) = fz+wi) = f(z 4+ wa).
For the order of a non-constant function at a point zy, we say ord,,(f(z)) = n if
f(z) = (2= 2)"(c+O(2 — 2)), c#0,

and ord f(z), the (total) order of the function f(z), is the number of poles of f counted according to
multipliticy (modulo A).

Proposition 2.1.2. Let f be a non-constant elliptic function modulo A. Then,
1.3 ccynres:(f) =0

8. > .ecpmzord;(f) € A
4. ord f > 2.

Proof. Let C' denote the counterclockwise traversal of the parallelogram with vertices 0, ws, ws + w1, wy.
Then,

1
res,(f) = — [ f(2)dz=0
z%/& 2m/c
L [1E,
Z%Ao d.(f) = 27Ti/c* ) dz=0



since integrals along opposite sides cancel. Next

Z zord,(f) = L Zf,(z)dz

CA 2mi Joo f(2)

_ Lo 2f'(z) (wg—i-z)f’(wg—i-z)dz
2mi Jo - f(2) flwz + 2)
N 1 “z2f'(2)  (wi+2)f(wi + 2)
2mi 0 f() flwi +2)
“f(2)
27rz f(2) dz
e,
il 7

= —wy (%bg f(2) :) + w1 (ﬁlogf@)}:?)

€A

dz

w1 -

since wy (and wsy) is a period of the function f(z), so the logarithm must change by an integral multiple
of 2mi. For (4), if f had order 0, then it has no poles, and is thus bounded so is constant by Liouville’s
theorem. If f had order 1, then it has a simple pole with non-zero residue, which contradicts (1). O

Later will we see that part (3) of Proposition 2.1.2 has a converse, that is, we can construct an elliptic
function with any poles and zeros that satisfy (3).

2.2 The Weierstrass p Function

For a lattice A, let A’ denote A — 0. Set

1 1 1
plebonwd) =5+ 2, oy~

(el = 3

weA
1
Gr(wy,wsy) = Z e
weAN!
The sum for p(z) is arranged so that
1 1

Grap w00

which makes the sum over A absolutely convergent. The series for G5 is not absolutely convergent, so
this is not a proper definition of G5. Later, when defining F,, we will fix the order of summation.

Proposition 2.2.1. Set A = Zw; + Zws. Then, p(z|wy,ws) is an elliptic function of order 2 mod A, and
we have:

1. The power series expansion
o0
o(z|wr,ws) = +Z (2k + 1) Gaopya(wr, wo) 2.
k=1

8



2. For X\ # 0 and integers a,b, c,d with ad — bc =1,
o(z|wr, wo) = Np(Az|dwr, Aws),
p(z|wr, ws) = p(z]awr + bws, cwy + dws).
3. The differential equation (set go = 60G4(w1,w2), g5 = 140G¢(w1,w2))
¢'(2)* = 4p(2)° — g2p(2) — gs.

Proof. From the definitions, it is clear that ¢'(z) is elliptic modulo A and p(z) is an even function. Let
w € A. Since @' (z+w) = ©'(2), it follows that p(z+w) = p(2)+n for some constant 7. Setting z = —w/2
shows that n = 0. For (2), set M = (2Y). Then,

1 1 1
b d - B
plelaw + b, cn + dup) 22 + . Z (z 4+ 7. M.(wy,w)T)2 (7. M.(wy,ws)T)?
7ez2—{0,0}
_ 1 + 1 1
2 mez2—{0,0} (Z - m'(wh w2)T>2 ('rﬁ.(wl, Wz)T)2
= p(Z|W1,W2>.

Since det(M) = 1, ri.M ranges over all of Z? —{0,0} and includes each point once, the change of variables
m = n.M is justified.

For (3),
, 424G
p(2)2:E 24—8OG6+O( 2)
4 36G
4p(2)* = — + === + 60Gs + O(2?)
6OG4

60p(2) = — +0<z2>.

From this it is clear that ¢/(2)* — 4p(2)? + 60G4p(z) is an entire elliptic function, hence it is a constant.
This constant is also easily seen to be —140Gg. O]

2.3 Eisenstein Series

Due to the homogeneity property in Proposition 2.2.1, without loss of generality we can set w; = 7 and

we = 1. In this case we have
at +b )
ct+d )’
which shows that the power series coefficients satisfy

Gy, (ar i b, 1) = (e7 + d)*Gop(1,1), k> 2.

z
et +d

ozl 1) = (e + d)%p (

ct+d
It will be convenient to have a normalization of these functions Eay(7) with Eoy(ico) = 1. For k > 1, set

G2k<’7', 1)

)= Gatioo 1)

mT —l— n
m=—00 n=-—00

(m.,n)#(0,0)



Proposition 2.3.1. The Fisenstein series Fop have the following properties.

1. For k > 1, we have

oo —
2 n2k lqk

C(1—2k) = 1—¢

Egk(T) = 1—|—

2. For k > 2, Eo(7) is a holomorphic function H — C satisfying

ar +b
Egk <C7‘ i d) = (CT +d)2kE2k(T).

We cannot conclude the last property for k = 1 because the series defining G5(7,1) is not absolutely
convergent. It turns out that Es(7) has a similar functional equation with a small “error” term.

Proof. Using Exercise 2.12.3,

Eoy(7)

- 1
<Z n2k+z Z (mT 4 n)? ( mT—i—n)%)

=1 m=1n=—

-~ 1
G X e

m:I n=-—o00

1—2k: ;;j% "

[e.o]

2k—1

- 1—2k J 1—qJ

J=1

]

2.4 Modular Discriminant A(7) and Klein’s Absolute Invariant
3(7)
Let e;(7) be the roots of the cubic polynomial in the differential equation for p, that is,
(¢)? = 40" — gop — g3
=4(p —e1)(p — e2)(p — €3).

The discriminant of the cubic polynomial is therefore

A(T) 1 = 16(e; — e3)*(en — e3)*(e3 — €1)?
= —64 (ere9 + €169 + e3e1) ® — 4326%6%63

= g5 — 2743,
where we have used

0=-e +ex+ €3,
go = —4 (6162 -+ €963 -+ 6361) s

gs = 4616263.

10



Also, set
. 172892 (7')3

() —
J(7) Al)
This function is known as Klein’s absolute invariant, or just the j function.

Proposition 2.4.1. For A(7) and j(7) we have

1. Representation in E; and Eg and q-series expansions:

64712
A(r) = T~ (B3 — B) = (21) %0 + O(a?),
. 17283 1
= —=- 44 .

2. For ad —bc =1,

ct +d
fart+0b — i)
J ct +d A

3. At T =ioco, A(T) vanishes and j(T) blows up.

A (‘” i b) — (7 +d)2A(),

4. A(T) does not vanish (equiviently, j(T) has no poles) at any T € H.
Proof. Exercise 2.12.2. O

2.5 Basic Properties of SLy(Z)

For the Eisenstein series, we were able to find the transformation formula for any a,b,c,d directly.
However, in most cases we will just prove the transformation formula for specific a, b, ¢, d and hope that
the result for general a, b, c,d can be obtained by iterating these special cases. Set

F(l) = SLZ(Z)7

i.e. the “modular group” or “full modular group”. A matrix in SLy(Z) acts on H via

a b\ ._>m+b
cd) T et +d

Note that ) .
aT + mT
I = 2.5.1
m(CT—l—d) ler + dJ? ( )
Two important elements are S and 7"
0 —1 —1
S = ( 1 0 ) T = T,
11
T:(O 1).T!—>T+1.

Also set
F={reH|-i<Rer<1iand|r|>1}.

The left and right edges with Rer = :I:% are identified via T', and the left and right edges of F' on |7]| =1
are identified via S. We will also formally include ¢00 in F' as well.

11



Proposition 2.5.1. For I'(1), we have
1. F is a fundamental for H/T'(1) with the appropriate edges identitfied.
2. 8 and T generate I'(1)/ £ 1.
3. For any T € F the isotropy subgroup I'(1), := {g € I'(1)|g7 = 7} is 1 except in the cases
® T = iOO, F(l)T = ﬂ:{Tk}kez
o 7 =14, I'(1), :=+{[,S}
o 7 =¢(1/3), (1), := £{I, ST, (ST)?}
o 7 =¢(1/6), (1), := £{I,TS,(TS)*}
Proof. Sketch of (1) and (3): Given 7 € H, we can apply T and S to get a point in F' by repeating the
following steps. Apply 7% to get 7 inside —% < Ret < % If |7| < 1 apply S. This must terminate
with a point in F' because Im 7 only increases throughout the process. Now suppose 71,75 € F with
Im 7 > Im7 are related by 7 = (am +b)/(cm + d). From (2.5.1), this means that |cr + d| < 1. Since
71 is in F' this restricts ¢ to ¢ = 0,1, —1.

(2). Given g € I'(1) take any 7 in the interior of F'. Use S and T to get g7 back into F' and use (1)
to conclude that g is a product of 7" and S (modulo £1). O

2.6 The n function and F»

The logarithmic derivative of

is simply related to Eo(T).

1 d 1 d [2mit &
21 dr og () 2mi dT ( 24 +Zn1 og( ? )>

=5 + qd_q ;log(l —q")
1 nqg"

T2 vt 1—qn

= iEQ(T)
Lemma 2.6.1 (Poisson Summation Formula for Cosine). Under suitable restrictions of the function f,
if o

o) = | fla) cos(emay)ds,

then

> gty =143 )

n=—oo

Proposition 2.6.2. For (25) € I'(1), we have

12



1. Es5 transformation:

Ey (1 +1) = Ey(7),
T2, (—%) = Ex(7) + =

2mT
ar +b 12¢
d)’E =F - .
(e7 +d) 2 (c¢+d> 2(7) + 2mi(cr + d)

2. n transformation:

where €,(2Y) is some 24" root of unity.

Proof. The first parts of (1) and (2) are trivial, so we start with the second part of (1). In Lemma 2.6.1
set

The result

is elementary, so the assertion of Lemma 2.6.1 gives

Z Z (nT +m)? 27rz7'_2421—q”7

m=—00 TL

2;( 5 ( 20(2) + 7%y (—%)) - 27137 ~ 1+ A,

which is the second part of (1). The second part of (2) follows from integrating the second part of (1)
and using 7 = 7 to evaluate the constant of integration. The third parts of each follow from the first two
since S and T generate I'(1). O

or,

13



Note that the n function is non-vanishing on H so we may define a logarithm

OMIT N
logn(7) :== 51 +Zlog(1—q").
n=1

This also entails that we may define a logarithm of the corresponding multiplier system

ar +0b 1 -
g (2 4) = logn (20 ) = S lou(/~Ter + )~ log(7).

Now we give a formula for loge,(¢5%) in terms of Dedekind sums and a slightly simpler formula for its
exponential €,(2%). For odd primes p let < > be the usual Legendre symbol. Extend this to all positive

odd d by means of the prime factorization d = p{* - - - p&* via

(E)Z(E)q”.(£>%
d b1 Pn .
Then, extend to negative odd d by

C sign(d)—1 sign(c)—1 C
(a) = (52)

Note we have the generalized quadratic reciprocity and periodicity

(2) — (1) <‘ |) for ¢, d odd

<c + d> — ( , d < 0 and sign(c) # sign(c + d)
d + (

(

+(

() - {4

,d=2,3 mod4
which are useful in evaluating the Jacobi symbol.

)

,d=0,1 mod4’

ol ol alo alo

Proposition 2.6.3. For ¢ > 0, the multiplier system of n(T) satisfies

6 0 b (g) C§£1—0)+bd(1—c2)+c(a+d) ¢ odd
pr— 2 B
n c d <ﬁ> ;Z-l—ac(l—d )+d(b—c) ; d odd

| a b _ 9 a+d+S(—d,c)
ogen| . g ) =2 50 5 ,

where S is the Dedekind sum S(h,k) = 327! £B1 (%) and By () is the periodic Bernoulli polynomial

B e} . 2 1
By(x) = —w = FracPart(x) — 7"
n=1

Proof. The first formula can be found in [10, pg. 51]. The second formula can be found in [2, sec. 3.4].
The first formula can also be deduced directly from the main result of Section 2.11. O

14



2.7 Recursions for the Eisenstein Series

The main result of this section is that the Eisenstein series Eg, Fig,... can be expressed as polynomials
in just £y and Fg. In the next chapter we will see that this is no accident and that the representation is
unique.

Proposition 2.7.1. Forn >0

B 6(2k + 3)(21 + 3)C(2k + 4)C(2L + 4)
Eonys(T) = O<%l:<n (n+ 1)(2n + 7)(2n + 9)C(2n + 8) Eopya(T) Egi44(T).

Proof. We have

6
p"(z) = + 6G4 + 60G622 + 210G824 + 504G1026 + 0(2’8),
z
6 ,
6p(2)* = — 136G+ 60Gs2” + (54G] + 84Gs) 2* + (180G4Ge + 108G1g) 2° 4+ O(2%),
so ¢"(2) — 6p(2)? must be a constant. The assertion follows by equating the coefficients of 24,26, ... to
zero in the difference p”(2) — 6p(2)2. Recall that Foy = mGQk. O

2.8 Elliptic © Functions

Besides the Eisenstein series, there are other ways of constructing modular forms. The main ingredient
is the Poisson summation formula applied to the Gaussian distribution. For arbitrary o, 5 € R, define
the © function with characteristics a, 3 as

@{g}(,z|7'):Ze((z+ﬁ)(n+a)+7(n+oz)2/2)

The variable z may take any value in C, but 7 is constrained to H, where the sum absolutely convergent.
Jacobi’s four © functions are then

O(z|T) =© %; (z|T) = -2 Sin(7rz)q”8 + 28111(37?2)(]9/8 + O(q”/s)’
O(z|T) = © ég (2|7) = 2cos(m2)q"/® 4+ 2 cos(3m2) "% + O(¢'7/®),
: 0/2 : 1/2 2 5/2
O3(z|t) = © 0/2 (z|T) =14 2cos(2m2)q/* + 2 cos(4m2)q” + O(q*'7),
: 0/2 : 1/2 2 5/2
O4(z|T) =© 1/2 (z|T) =1—=2cos(2mz)q " + 2 cos(4mz)q” + O(q*'7).

Proposition 2.8.1. For integers A and B, we have
1. Quasi-periodicity relation:

«

@[g](z+AT+B\7):e(Ba—Aﬁ—Az—AT27—>@{B](2]7').

2. Shift of characteristics:

o [ P } (2I7) = e(aB)O [ p } (217)

15



Proof. For (1), let
su() = e (24 B) (n+a) + 7 (n+a)? /2).

We have
o { e } (z+ AT+ Bl7) = Y su(z + At + B)
ﬁ nez
AT
nez
AT
nez
A2
=e (—AB — Az — TT) e(Ba + Bn) Z Sn(2)
nez
A2
:e(Ba—Aﬁ—Az—TT)@ [ g } (2]7).
(2) says that © doesn’t change much when the characteristics are changed by integers and follows by
shifting n — n — A in the series definition of © [ gi—g } (z|T). O

Lemma 2.8.2 (Poisson Summation Formula). Under suitable restrictions of the function f, if

fly) = / " f(@) exp(~2may)dy,

then

Y fm)y= ) fn).

Proposition 2.8.3. For (2%) € I'(1), we have

1. Transformation under T':

O (2|7 + 1) = ViO(2|7),
O, (2|7 + 1) = ViOs(2|7),
O3(z|T + 1) = O4(2|7),
O4(z|7+ 1) = O3(2|7).
2. Transformation under S':
z 1 , 22
@1 (; — ;) = —1V —IiTE Z) @1<Z|T),
2
0, (3 - 1) Y (Z—) Ou(2|7),
T T 2T
2
O3 (z - l) =/ —ite (z_) O3(z|7),
T T 2T
2
O, (E - l) =/ —iTe (Z—) Oy(z|T)
T T 2T



3. General transformation for ©:

z ar +b y cz?
O, <c7‘ d ) =€,/ —i(ct +d)e (2—) O1(z|7)

cT+d (et 4+ d)
where €g, ((25)) is some 8™ root of unity.

4. General transformation for arbitrary characteristics:

14 z jar+b\ : cz? L aa+c¢p
o 115 | (Falira) = oo e (g ) o 11000 e

cT +d
e (_ab2042 bea - cd252> . (_(a — 1)a—|—cﬁ)

2

Proof. The transformations in (1) are straightforward, so we concentrate on (2), where the proof for O3
will give the idea of the proof of the others. In Lemma 2.8.2 set

f(z) = e (20 + 72°/2)

(-1
- V—ire (%) 7
so the transformation for O3 follows. (3) follows by iterating (1) and (2).

The assertion (4) is equivalent to (3) since the © function with an arbitrary characteristic is no more
general than ©;(z|7). We can write ©; as a shift of the © function with general characteristics as

0,(2Ir) = ¢ (‘““ S ”) 6 [ ijg ] (s — a7 — fl7)

It is easy to compute

and then transform part (3) of Proposition 2.8.3 . The details are messy but straightforward. O
Proposition 2.8.4. We have

1. ©4(z) is an odd function of z

2. The zero set of ©1(2) is exactly Z + Zt

3. Jacobi Triple Product:
01(2[7) = —igz ¢ (45 @)oo (0/ 225 D)oo (4 O o

4. Asz—0
O1(z|1) = —2mn(7)32 + O(2%).

(2 )3

Proof. (1) follows by replacing n — —1 — n in the series definition of ©;.

O1(zlr) =Y 2 i(—1)"e (z (n + %))

ne”

17



For (2), we integrate around a fundamental parallelogram to get the number of zeros of ©; modulo

the lattice as
1 w—+1 w+1+7 w—+T w
—</ +/ + +/ )dlog@l(z).
2mi w w—+1 w1471 w—+T

By Proposition 2.8.1, we have

dlog©;(z + 1) = dlog ©4(2)
dlog©1(z + 7) = dlog ©1(z) — 2midz

This first equation says that the second and fourth integrals cancel completely. This second equation
says that the first and third integrals combine to give a total of
1 w41
2t f,,

zero in a fundamental parallelogram.
(3) is a well-known identity, and (4) follows from rewriting (3) as

G _ 18

7 iz = 4 (005 oo (9/:5 D)oo (6 D)oo
i(¢:"" —¢:")
and letting z — 0.
(5) follows from differentiating part (3) of Proposition 2.8.3 and substituting part (4) here. O

Proposition 2.8.5. We have

1. Relation between p(z) and ©1(z):

0? w2
o(ef7) = — 2108 @4 (2J7) — T Bufr).
2. Ifpr+--+p=q+ - +4q, then

O1(z —q1|7) -+ - O1(2 — ¢-|7)
O1(z — p1|7) - O1(2 — pr|7)

15 an elliptic function modulo Z + Z7 with poles p1,...,p,. and zeros q,...,q;.
3. Factorization of p(z1) — p(22):

o) = o(z) = <2m~>2n<7>6@1(21@338152; &

Proof. From Propositions 2.8.1 and 2.8.4, we see that
92
o(z|T) + £ log ©1(z, )

is an entire elliptic function, hence it is some constant C. In order to evaluate this constant we need to
get the next coefficient in the expansion of (), i.e.

01(z) = —2mn(7)*(z + %23 + 0(2%)).

18



To this end, note that

aa_;@l(zm = (2mi)* > <n+ %)3(3 ((z—l— %) <n+ %) +% <n+ %>2>

nez
.02
= 4maTaZ@1(z|T).
Therefore,
C 0?
3 _
—27n(T) 3 6= %Gl(zh) _
0P

= 4#2878261(2]7) -
= —871'27;% (7)?

and so C' = _%QEQ(T).
(2) Follows immediately from Proposition 2.8.1, which says that
O:1((z+1) —a|r) = —61(2 — a|7),
O1((z+71) —a|r) = —e(la— 2z —7/2)01(z — a|7).

Aslong ase(qr+---+ ¢ —p1 —---—pr) = 1, the displayed quotient will be an elliptic function modulo

7+ 7Lr.
For (3), note that there is a constant A, depending only on 7, such that

o) = O1(21 — 22)01(21 + 22)
p(21) — p(z2) = A 01(21)20,(2)? ;

since both sides have the same poles and zeros as functions of either z; or zo. To evaluate this constant,
multiply both sides by 27 and let 2; — 0. This gives

@1(-22)@1(22) im Z%
@1(22)2 z1—0 @1(21)2

2

1=A

— A lim /2

= —A(=2m(7)") "

2.9 ['(2) and the Asymptotic of © Near the Cusps

According to Proposition 2.8.3, we have a surjective homomorphism I'(1) — Ss3, where S3 the the group
of permutations on the © functions ©,, ©3, ©4. One might wonder what the kernel and stabilizer of, say,
O3 is, that is, what the groups

B a b at +b 8_ 4 8 .
Gl—{(c d)er(l)l(ai (0‘c7+d) = (er +d)*0;(0|7)® for all i € {2,3,4} 7,

Gy = {( ’ Z ) eT(1) | Oy (0‘?112)8 = (c¢+d)4@3(0|7)8}
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are. To answer this question we can apply part (4) of Proposition 2.8.3 to see that the kernel of the
homomorphism I'(1) — S5 consists of those (¢ %) € I'(1) for which

ac+cf =a mod 1,

ba+dpf =L mod 1,

for all half-integers o and /3. Clearly this is the group

Glzr(z):z{(i Z)EF(W(Z Z)z(é (1)>mod2}.

By the first isomorphism theorem, we have
L(1)/T(2) = S5 = {T'(2), (ST)T(2), (ST)*T'(2), (S)T(2), (T)T(2), (T'ST)T(2)}.
The following groups between I'(1) and ['(2) have important names:

Fo(2) = {T'(2), (1T(2)}

:{(Z Z) 6F(1)|CEOmod2},

Ty = {T'(2), (5T(2)}
- {( z Z) eF(l)|abEchOmod2}.

Note that Gy = I'y, which is known as the theta subgroup of I'(1) while I'y(2) is know as the principal
Hecke subgroup of level 2.

The main goal of this section is to establish asymptotic formulas for the © functions near the cusps
in order to obtain explicit formulas for the roots of unity involved in the multiplier systems for these
functions. When the function vanishes at a cusp, it seems that we need to use the modular inverse symbol

1

xmody

= z whenever there is a z such that zz =1 mod y and 0 < z/y < 1.

Note that we always have a reciprocity property given by

1 _1
xz mod y + ymod T _ 1 + i
Y T Ty

When it is clear, we will set O(7) = ©(0|7).
Proposition 2.9.1. Let ¢ and d be any integers with (¢,d) =1 and ¢ # 0. Then, ast — 0T,

1. Relation to exponential sums

2

d 1 2
VictOs | it — — e d
1ctOs <z c> Z Cae , cd even

™

e Vicl®y <z’t— d> e S (G ) G ed odd

2 c
2. @3.’
VictOs (it — gl) ~ (E G , ¢ even d odd

C

mode ¢ odd d odd

e d
T VictOs (z’t - —) ~
2 c

)
s o-8) - (1)

(s , ¢ odd d even



3. @4 N
gl—i—?c—d—cd
8

2
/N
Ul o
——

, ¢ even d odd

.
~
I

, ¢ odd d odd

QI& o | & OI&.

~ ~ O~~~
2 2
N N
RN EY
~__
®

> §C§8d) mede ¢ odd d even

4. @2.’
646 t \/E(_)Q

c even d odd

VRS
ISH e
N———
00 Co
T
w
D o,
o}
g
[}
(oW
[e2)
2}

VictO,

(-
!
yren %@4 (
(-
[

d
~ (‘C‘) CCd+3C+2d+2; c odd d odd

d d
VictO, (it — —> ~ <‘—) chre=2d ¢ odd d even

|

Proof. To avoid complications, the factor v/—ict is handled like y/|c|t. This results in a ngn(

in the formulas, since

\/E \/_ngn c .

For (1), if cd is even then the function of n given by e <

o ) has ¢ as a period. Therefore,

meZ
m=n mod ¢

(
(55) ¥ e
(

—dn2 24
= Qg (ientlic’t
2 e\ =, ) 5 (icnt|ic’t)
i (—dn2) 1 (n‘ i )
= e _ —
— |c|\/— clc?t
|l
1 1
C{Cd”Q X .
lc| i |c|t

2 canceling

If ¢d is odd, then ©3 vanishes at this cusp, so the evaluation is slightly more difficult. In this case e (dgc >
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changes sign when n is incremented by ¢, so temporarily setting ¢ = e nT,

|c|
d an 24 2
T —mm?t _ _—mw(m+c)?t
O3 <zt c> = E e (_20 ) E e e

n=1 meZ
m=n mod 2|c|

dn? ®3< 4c2t> @3< 2¢ 4ciQt>
(2) 20V

|c]

1]

] _an2\ (1+2gcos () +---) — <1+2qcos< (n+)>+--->
Z( 2 ) 2|V

) () 2

For (2), let T'(d, c) denote lim_,o /|c[tO3 (it — 4). By (1),

1 ¢ Cdn? (%) g‘sg“(c) , c odd d even
- \/H Z <2C - ¢\ ~l—d—sgn(c) ’
1 ()

s , c even d odd

where we have used the classical evaluation of quadratic Gauss sums (for any integers p and g with ¢ > 0
and (p,q) =1

q P 1417
a g\ 144P 1444
Vi 4) WL poodd

) in the case ¢ odd d even for in this cases it becomes a sum over |c|*" roots of unity. The ¢ odd and d
even case follows from O3(—1/7) = v/ —iT@g( ). The second part of (2) can be obtained by completing
the square in the sum ZM (CQC + Ca ) , but here will use the easy identity

@3(7’ + ].) = 2@3(47’) - (“)3(7‘).

to give an alternate derivation. First, we need to obtain the next term in the expansion of O3 (it — g) for
c odd and d even. In this cases find integers a and b so that ad —bc = 1 and a is even. The transformation

formula for O3 is
€ at +0b
O3(7) = e ,
+(7) —i(er + d) ’ (67+d)

where € is some 8" root of unity. Setting 7 = it — d/c in this formula produces

—d € a, ¢
o (2 it) = o (04 )
€ a z
= 1 2 T2t “ e
/Ct( + e<2c)e + )
_ 7(d,c) <1+26 (%) 6—£t+---).

C
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Now let ¢ and d both be odd. Setting 7 = =¢=¢ + it in the identity produces

C

d —de—4d —c—d
O; (———i—it) — 20, (C—+4z’t) —@3< ‘ —|—z’t>
C C C
T(4d + 4 -1 ;
V4|t ¢

_T(d+c¢c) (1+26 (%) €—c§t+...)

||t c

-1
_ T(d"—C,C)e ((Sd) modc) QE*ﬁ + ey
]t ¢

which gives the second part of (2). Parts (3) and (4) follow from the identities
O4(r +1) = O3(7),
Oo(—1/7) = V—=iTO4(T).

Care has been taken to ensure that the formulas are valid for negative c as well. O

2.10 Addition Formulas

Theorem 2.10.1 (Weierstrass). A meromorphic function f : C — C possesses an algebraic addition
theorem, that is, a non-trivial relation of the form

P(f(z), f(y), f(x +y)) =0,

for some polynomial P with coefficients independent of x and y if and only if f(z) is one of the three
possibilities:

1. rational function of z
2. rational function of e(z/w) for some period w
3. rational function of p(z|wi,ws) and @' (z|lwi,ws) for some periods wy, wo

The third part of this theorem is usually stated with “an elliptic function of z modulo Zw; + Zws”.
These are equivalent because any elliptic function is a rational function of p(z) and ¢'(z). First suppose
that f(z) is an even elliptic function with zeros +q,, ..., ¢, and poles +p,, ..., £¢q,. Then, there must be

a constant ¢ such that .
p(z) — ()
f@=cll —F——F+
H 0(2) — p(p:)
and so f(z) is a rational function of p(z). Next, for an elliptic function that is not necessarily even, use

f&) + f(=2) | () - f(2) —f(—Z),

FEHI) g L)1)

where 5 5 are even elliptic functions.
o' (2)

Proposition 2.10.2.
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1. The map z — (p(z|lw1,ws), P'(z|w1,ws)) defines a bijection between the points of C/(wiZ + woZ)
and the points on the curve y? = 423 — gow — g3 (with oo included).

2. For any g, g3 € C such that g3 — 27g> # 0, the system

go = 40G4(W1,W2)
gs = 140G6(W1,WQ)

is solvable for some periods wy,ws.

3. Ifu+v+w=0 mod wiZ + woZ, then (p(u), p'(u)), (p(v), P'(v)), and (p(w), ¢'(w)) are colinear,

that is
1 p(u) ¢'(u)
det | 1 p(v) ¢'(v) =0
1 p(w) ¢(w)

4. Explicit addition formula for p(z):

gﬂw—wwvi

olu-t) = o) + o) + 7 (S0

4

Proof. (4) is left as an exercise. (2) will be established later when it is shown that j(7) is a univalent
function H/T'(1) — C.

For (1), suppose that (p(21),9'(21)) = (p(22), 9'(22)). Since p(z) is an elliptic function of order 2,
we must have z; + zo = 0. This implies that ¢'(z1) = @'(—22) = —¢'(22) = —¢'(21) which means that
©(z1) = 0 and @'(z5) = 0. If it were true that z; # zy this would mean that the function f(z) =
0(2) — p(z1) would have at least double zeros at the two distinct locations z; and z;. This contradicts
the fact the f(z) has order 2.

For (3), determine the line I(z,y) = 0 through the points (p(u), ¢’ (uv)) and (p(v), P'(v)). Assume
that this line is not vertical, so I(z,y) = A + Bz + y for some constants A and B. The elliptic function
l(p(z), 9'(2)) has order 3 in this case so its zeros u, v and wy, say, satisfy u + v + w; = 0. This implies
that w; = w, so the assertion follows. If line is vertical, then it follows that © + v = 0, and so w = 0,
which is consistent with the third point (p(w), p'(w)) being located at oc.

0

2.11 TI'(3) and the Asymptotic of n Near the Cusps

The 1 function vanishes at every cusp and is modular with respect to I'(1). It turns out that there is
quite a magical formula for the asymptotics near the cusps. We simply state this first and devote this
section to understanding this formula.

Proposition 2.11.1. Let ¢ and d be any integers with (¢,d) =1 and ¢ # 0. Then, ast — 07,

||
x d 1 26— _ —d(6n—1)2
Vid e <——+it> - 1 n< 2(6n 1)+ 2(6n 1)) d(6n—1)
n c \/mnzzg( ) <24c C24c 24c
@—y@-nat, (5 @it d odd
x (i) 3c—2cd ¢ odd
c 24 )

d+
= C24c
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Proof. Let us first check that the final expression on the right hand side is well-defined. This entails
showing that (¢ — 1)(d? — 1) = 0 mod 24, which is indeed true for relatively prime integers ¢ and d. As
a consequence of the Jacobi’s triple product identity, we have the representation

00 =02 P )i = S 1 (O,

24
meZ

hence the representation as a sum over roots of unity follows along the same lines as the calculations in
Proposition 2.9.1. The explicit evaluation will be deduced below. O

Since the exponential sum in Proposition 2.11.1 seems difficult to evaluate directly, we will use an
indirect approach based properties of the modular group. Recall that we have the subgroup of I'(1) given
by

['(2) ={M e I'(1)|M = I mod 2}.
We had I'(1)/I'(2) ~ S5 with the elements of the quotient realized as the six permutations of the three
functions O,(7)%, O3(7)® and ©4(7)%. We can also define

I'(3) = {M € I'(1)|M = I mod 3}.

The full modular group I'(1) acts on the four functions

foolT) = 3(37)™, fo(f):nG)“’ fl(ﬂ:n(T?)M’ fz(r):n(T?)M

by permuting them according to A4 since the two permutations

foo(=1/T) = T2£o(7),  fool T+ 1)= foo(7),
fo(=1/7) =2 f(7), fo(r+1) = fi(7),
[(=1/m)=72f(1), AT +1) = fol7),
fo=1/7) =72f1(1),  folr +1) = fol7)

generate all of A4. It is not hard to show that the kernel of this homomorphism I'(1) — A, is exactly
+I'(3). Suppose fo and fy are fixed by some (2 %) € I'(1). Thse two conditions are equivalent to

30Y(ab\(3 0\ a 3b
(0 1)(0 d)(() 1) _<c/3 d)er(l)’
10 a b 10\ a b/3
(0 3)(0 d><0 3) _<3c d )eF(l).
Therefore, we must have b = ¢ = 0 mod 3, which is exactly the defining congruences for +1'(3). Now,
any permutation in Ay that fixes fo, and fy necessarily fixes f; and f5, so we have shown that the kernel
is exactly £I'(3).
Since S3 has a normal subgroup whose factor group is Z,, there is a group I'? with T'(1)/T? ~ Z.

Similarly, A4 has a normal subgroup (Z, x Zy) whose factor group is Zs, so there is a group I'* with
['(1)/T® ~ Z3. In summary,

[(2) <T?<T(1) with D[(1)/T? ~ Zy,

+0(3) < T < T(1) with T['(1)/T? ~ Zs.
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For a given subgroup I' of SLy(Z), let T' denote I'/ & I, that is, the equivalent classes of matrices up
to sign. Sometimes, if we are very careful, we will denote these elements with a bar over them. Note that
[(1)/T(2) ~ S5, I'(1)/T%~ Zy,

[(1)/T(3) ~ Ay, T'(1)/TP~ Zs.
Also, let G* denote the Abelianization of G, the quotient of G and its commutator subgroup. We

have the following universal property of the Abelianization: if ¢ : G — im(¢) is a homomorphism to an
Abelian group, then there is a unique homomorphism A : G# — im(¢) so that the diagram

G —I - G#b

& lh
im(¢)

commutes. Since I'(1) is generated by S and ST and these elements have orders two and three, respec-
tively, it follows that B -
L(1)* c {SY(ST) | i€ {0,1},j € {0,1,2}} = Zs.

Now define 7 : I'(1) — Zg by
aT 4
(e Yy " ()
c d (e +d)2n(T)¥

where we have identified Zg with the sixth roots of unity. Since 7(S) = —1 and 7(T) = (s, we see that
7 is a surjection, and so

[(1)* ~ Z.

Proposition 2.11.2. The function n(7)* is modular in weight 2 with respect to T'(2) NT(3), i.e.

0 (3:2)4 = (e +d)*n (7)", for ( . Z) e (2)Nr(Q).

Proof. The natural projection map ¢ : I'(1) — f(l)/f2 X f(l)/f3 has image Zo X Z3 ~ Zg, which is
Abelian. By the universal property of the Abelianization, we have ¢ = h o w, where, in this case, h must
be an isomorphism. Therefore, ker(7w) = ker(¢) = 'nl ¢ r'(2)NT(3). O

According to Proposition 2.11.2, if we want to find the sixth root of unity e(( %)) so that

(T = (2 8)) e rarat o e e

it suffices to find a formula for ¢((¢ %)) that satsifies

(T (2 0) @ rare oy e,

ct+d
(T = (2 8)) et o T
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for just the finite number of elements in I'(1)/I'(2) for the first formula and I'(1)/ £ I'(3) for the second

B () AR
(1)
(@21

For I'(1)/ £ I'(3), we have

(o) e (h2))-¢
() e ((a1)) =0
(e))-e o(+(01))-¢

(EG2) e E00)-¢

0 1Y\\'__,
10)) "7
3

10

1 1))“1’
LIV
01))" "~

[\

()
(1)~
()~
()

(2.11.1)

(2.11.2)

In order to complete these calculations, we write each matrix in SLy(Z/2Z) (resp. SLo(Z/37)) as a word
in S and 7' modulo 2 (resp. 3) and apply the homomorphism (7" +— (3, S+ (o) (resp. (T +— (3, S +— 1)).
Noticing that 1 — ¢? is congruent to 0 mod 2 (resp. 3) only when c is not congruent to 0 mod 2 (resp.
3), we split the evaluations into the two cases ¢ = 0 mod 2 (resp. 3) and ¢ #Z 0 mod 2 (resp. 3). By

inspection of (2.11.1) and (2.11.2), we see that
a b 5 - é’d
¢ c d IR Resan
2 bd
a b 3
e(i(c d)) ={<§a+d)c

((20)
(¢ 2)

Therefore, we have

VR
o
QL

and so,

3
_ sbd(1—c?)+(a+d+1)c
= G

2
) _ C:l;d(l—cz)-l-(a-l-d)c

, c=0mod 2
,cZ0mod 2’

,c=0mod3
,cZ0mod3

)

)

() -s (2 0)) (2 0))

_ bd(1—c?)+(a+d+3)c
¢ -

Finally, setting 7 = it — d/c in the transformation formula

ar +0\* _ bd(1=c?)+(a+d+3)e 2 4
n =¢ (et +d)*n(7)",

ct +d
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and keeping in mind that ad — bc = 1, we derive

(ict)2eﬁ __d_|_2't ' e _a_C_i_i_'_@_%_c_d_g
A 6 6 6 6 6 2/

In order to determine the correct fourth root, we need a formula for an odd power of the n function.
Fortunately, the relation

n(r)? = %@2(7)@3(7)@4(7) (2.11.3)

is a consequence of Jacobi’s triple product identity (see Exercise 2.12.4). Let us now assume that c is
odd and apply the asymptotic for the © functions derived in Section 2.9. These formulas give

i d 3 <%‘> cC(Sd)_mlod CC§C+2d+Cd+2’ d odd
(ict)** e (it - _) ~ (8d) !
C (%) CC modc<830*2d+0d’ d even

d\ (8d)7L,. ~c(3-d
= <_) CC( )mod CCB(?) )’

¢l

() (1z95%).

where we have cleverly combined the two cases into one that holds for all d and used the elementary
observation that

-1 2
(8d) mod ¢ = (1 C )a HlOd 1
c 8c

for odd ¢ (recall that ad —bc = 1s0o a =d ", ,.). Also, this is well-defined because ¢ — 1 = 0 mod 8.
Finally, since ¢ — 1 = 0 mod 8,

. o . 4
Vict et g (_—d + it) — (c bd(e® 1)) (ict)? es (it — 9)

¢ 8 (ict)3/? ez (it — g)3

d), (Lo, a bPd_bd_cd c
|c| 24 24c 24 24 24 8)°

After eliminating b via ad—bc = 1 and replacing a by djnlo 4 o this becomes the assertion of the proposition

for ¢ odd. The case d odd can be dealt with similarly, but we can also use n(—1/7) = v/ —itn(7), and,
when relating d_* to c;', we can use

2.12 Exercises

Exercise 2.12.1. Prove part (4) of Proposition 2.10.2. You will have to actually work out the third
intersection point of a line with the curve y* = 413 — gax — gs.

Exercise 2.12.2. Prove all parts of Proposition 2.4.1

Exercise 2.12.3 (Lipschitz summation formula). For integers k > 1, show

1 - 1 _ 2 - k-1 _j
RPN e Ty Z’ =

—00
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You might need the functional equation for ¢ in the form
2 B (2ri)?* 1
C(1—2k) (2k—1)!C¢(2k)
Exercise 2.12.4. Via Jacobi’s triple product identity, show that
5 127)*

6a(0r) = 27 73 = 2
77() 1/2
@4(0|T):n<n(é_2)> =1-2¢"2+.--.

Exercise 2.12.5. This exercise deals with the theta subgroup

ng{(z Z)EF(l)]abzchO mod2}.

1. Show that S and T? generate T'y/ + I. Possible hint: first show that every rational number is
[y-equivalent to either 1(= 1/1) or ico(= 1/0) and deduce a fundamental domain that has 3 =
[['(1) : T'y] translates of the fundamental domain for I'(1).

2. Deduce that the multiplier system for Oz satisfies

o (0 a7‘+b) 0,(0]7) (9)e(59) /—i(er +d) , c odd
*\Uler +4d (E)e(dgl) Ver +d . d odd
for any (¢8%) € Ty. Hint: Let T = it —d/c and use the asymptotics at the cusps and be careful with
the branches of the square root: —7/2 < Arg(y/z) < 7/2 and the properties of the Jacobi symbol.
Exercise 2.12.6. Show that for any (25) € T'(1)

ar +b ( - d) ( ) ) (g) C§4170)+c(a+d)+bd(1702) . ¢ odd
=/ —1lcT T .
n er+d n (ﬁ) 3d+d(b—c)+ac(1—d?) ; d odd

Exercise 2.12.7. Investigate
log |©s <it + %5) |
log(t)

ast — 0F.
Exercise 2.12.8. The Weierstrass o function for the lattice A = Z7 + 7 is the entire function defined as

o(zlt) ==z H (1 — j}) ew+2w .

weAN’

The product is absolutely convergent. For (¢%) € T'(1) and integers A, B with w = AT + B, show that
2

p(z|T) = _WJ( z|7)
_efEQ(T)ZQ

2mn(1)3
ar +b

z _ 1
4 <c7’—i—d CT+d) = (et +d)"o(|7)

o(z+wlT) _ yarpaas, (_(6A+ T (T)w)(22 + w)
o(z|T) = (=) ( 12 )

o(z|r) =

O1(z|T)
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Exercise 2.12.9. Use Proposition 2.7.1 to get

Ey = E?
FEyo = E4E6
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Chapter 3

Theory of Modular Forms on Slg(Z)

3.1 Definition of a Modular Form

in weight & (an integer) for a matrix (¢ %) with positive determinant as
_ (ad—be)*t  far+b
f|((33)’k<7) (et +d)k / ct+d)

One can easily check that this operation is compatible with matrix multiplication, that is,

Define the slash operator |(a by k
cd”

f|M1,k’|M2,k(7—) = f|M1M2,k‘(7—)'

Here, | s k| a,,x means the result of applying |, & followed by |, k-
Now suppose that f(7) has period 1 (f|r = f) so that it has a Fourier series expansion in the form

fr) =) ad" (3.1.1)

We say:

1. f(7) is meromorphic at oo if only finitely many negative powers of ¢ appear in (3.1.1).
2. f(7) is holomorphic at oo if only no (strictly) negative powers of ¢ appear in (3.1.1).

3. f(7) is vanishes at oo if only (strictly) powers of ¢ appear in (3.1.1).
Since T' € I'(1), the following definition makes sense.
Definition 3.1.1. Suppose that
flow(T) = f(7), for all g € I'(1) and almost all T € H.
Define the various spaces Ay, M}, My, Sy for any integer k as
1. Automorphic forms of weight k:
A(T(1)) ={f(7) | f meromorphic on H and meromorphic at oo}.

2. Weakly-modular forms of weight k:
M (T(1)) = {f(1) | f holomorphic on H and meromorphic at co}.

3. Modular forms of weight k:
M(D(1)) ={f(r) | f holomorphic on H and holomorhpic at co}.

4. Cusp forms of weight k:
Sp(T'(1)) = {f(7) | f holomorphic on H and vanishes at co}.
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3.2 Valence Formula
For any 75 € H U {o0}, define the order of a meromorphic function as

smallest power of (7 — 79) in the Laurent series expansion of f at 79 , 79 € H

ord,, (f) = {

smallest power of ¢ in the ¢-series expansion of f , To = 00

Proposition 3.2.1. If f € Ax(I'(1)) is not a constant, then

ordoo(f)+%ordi(f)+%orde(é)(f)—i— S ord(f) = -

Proposition 3.2.2. If f € A,(I'(1)) is not a constant, then
1. k is even

2. Set ( = e(%) andn = ord¢(f). Then, n = —k/2 mod 3, and f has an expansion in the local variable

at ¢ of the form
T_C_ k 00 T_C n+3j
() 10-2a (=) are

=0

3. Set ¢ =i and n = ord¢(f). Then, n = —k/2 mod 2, and f has an expansion in the local variable

at C of the form
T_Cf k B 00 T_C n+2j .
() 10-2a (=) are

=0
Proof. Since —1 € I'(1), (1) follows.
For (2), set ¢ = e(3) and ¢ = %% The fact that n = —k/2 mod 3 follows easily from the valence
formula. Next with ¢(t) defined for |t| < 1 by

= ") = 0t

Note that g(t) is holomorphic at ¢ = 0. One checks that the relation f(—1—1/7) = 7%f(7) is equivlant
to g(Ct) = (" g(t). Since g(0) # 0, this provides another proof of the fact that n = k mod 3. Also, g(t)
has a expansion in non-negative powers of ¢ that are all multiples of 3 since g((t) = g(t).

A similar argument establishes (3).

3.3 Dimension Formulas and Generators
Proposition 3.3.1. We have

1. Ay, N Ay, = {0} for ky # k.

2. Ay, - Ay, C Apypiky

3. My(T'(1)) = C[j(7)].

4. Ao(I'(1)) = C(j(7)).
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5. Sp(D(1)) = A(T) My—12(T'(1)).
6. M (T(1))= & CE$E;. Also,

4a+6b=Fk

a,b>0
o 1 1 t4 tﬁ t8 th t14
S dim My (T (1))t = LR L
i (1=t —1%) (1—t12)

St 6 8 410 g2 4 gl L 0g16 | 0418 | 9420 4

Proof. (3). By subtracting powers of the j function (j = % +--+), for any f € M}(T'(1)) we can write

where P is a polynomial. The valence formula implies that f(7) — P(j(7)) vanishes identically because
it is a function of weight 0 without any poles and a zero at oco.

(4). Given any f(7) € Ap(I'(1)), we can multiply it by a suitable polynoimal in j(7) to obtain a
function in M} (T'(1)). By (3), f(7) must be a rational function of j(7).

(5). If f(1) € Sk(I'(1)) then f(7)/A(7) € Mj_12(I'(1)) since A(7) has no zeros on H (Proposition
2.4.1) and a simple zero at oo.

(6). The valence formula implies that dim(Mj(I'(1 ))) 0 for k =2 or k <0 (or k odd) and that
dim(My(T'(1))) = 1. Suppose that k is even and f(7) = ¢+ O(q) € My(I'(1)). Then,

F(7) = cEx(7) + (Bu(7)” — Es(7)*)g(7)

where g(7) € My_12(7). Since we have already shown that Ej is a polynomial in E, and Fg, by induction
we obtain that f is of the form

f(r) = Z ca,bEZEg'

4a+6b=k
a,b>0

This representation is unique because if

0= Y cuBE{E]

4a+6b=k
a,b>0

for some k and some choice of ¢,; then muliplying by E, 1 shows that E2/E3} is constant, which it is
not. ]

Proposition 3.3.2. The map 7 — j(7) defines a bijection between H/T'(1) and C.

Proof. The function j(7) — ¢ € Ap(I'(1)) has exactly pole (at co) so has exactly one zero. O

3.4 Applications to Identities

Proposition 3.4.1.
A(r) = (2m) ().

Proof. dim Si5(I'(1)) = 1 and the first term in the g-series expansion of A is given in Proposition 2.4.1. [
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Proposition 3.4.2. Let f; be a non-constant element of My, (I'(1)) for i = 1,2,3.
nontrivial algebraic relation of the form

Then, there is a

P(f1, f2, f3) =0

for some polynomial P.

Proof. Consider the set
Fe = {f1 15}

a,b,c>0
aki+bks +cks=k

We have (as k — 00)

|Fo| + |Fy| 4 -+ + | Fe| = [{(a,b,¢c) € Z2 2o | aky 4 bky + cks < k|
1 k3

~ 3 kykoks

If fi, fo, f3 were algebraically independent, Fj would be a set of linearly independent elements of M}, for
any k. Therefore, |F;| < dim M), and

|Fol + |Fy| + - - + | Fy| < dim My + dim My + - - - 4+ dim M},
1 k2
PTYRE
which is a contradition for large k. O]

One should note that Propostion 3.4.2 applies not only to I'(1) but to any finite index subgroup I" of

['(1), as later we will show that

k

where this formula is restricted to even k when —1 € I

dim My (T) ~

Proposition 3.4.3. The three © constants ©4(7), O3(7), O4(T) are algebraically dependent, and
93(7)" = ©2(7)* + ()",

Proof. We can obtain the algebraic dependence from Propostion 3.4.2 with f; = 8 4+ 0% + ©%'. In order

to actually obtain the relation, we compute that

2F, = 05 + 65 + 6},
QEZ = 05"+ 05° + @4
= 6565 + 0563 + 0565,
28 24 @8@8@27

since My, Mg and S5 are all one-dimensional. Therefore,
0= 05"+ 6i° +6,° — 2 (0565 + 6565 + 056})
= (03 — 03— 03) (03 + 03 — ©)) (6; — 65+ 6)) (6 + O3 + 0]) .
By examining the g-series expansions, we see that it must be the third term that vanishes identically. []

We will frequently use Ramanujan’s differential operator 6 defined by

9f(7)=——f()

2mi dr a7
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Lemma 3.4.4. The operator

k
F(r) = 0f(1) = 5 Ea(7) f(7)
maps My(T(1)) to My,2(T'(1)) (and Ax(T'(1)) to Apo(T'(1))).
Proof. Exercise. O
Proposition 3.4.5.
_ Es(7)
9] (7—) - E4(T)j(7_)
Proof. Exercise. O
3.5 Exercises
Exercise 3.5.1. Show that .
f(r) = 0f(T) — 1—2E2(T)f(7)
maps Ak — Ak+2, M, — MkJrg, and Sk — Sk+2-
Exercise 3.5.2. Show that Eo(r)
— 6 T
9] (T) - E4 (7_)]<7_)

Hint: j = E3/n** and My4(T'(1)) = CE}FEs.

Exercise 3.5.3. Ezpress j(7) as a rational function of the elliptic X function, which is defined by

Exercise 3.5.4. Show that EA#:)’) =0 and Eg(v/—1) = 0 and deduce the following values of the j
function at quadratic irrationals:
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Chapter 4

Theory of Modular Forms on Congruence
Subgroups of Sly(Z)

In this chapter several ways of building modular forms on conruence subgroups of I'(1) are presented.
Although there certainly are other methods, we will contruct functions by means of

e Klein forms and Eisenstein series. These turn out to be specializations of the functions o(z) and
((2),0(2),¢'(2), 9" (2),... functions to points z € +Z + +Z7. These produce modular functions
and forms on I'(V).

e O functions from any positive definite qudratic form. If the quadratic form takes values in the even
integers and its dual takes values in %Z, then the resulting © function is modular with respect to
Co(N).

e The 7 function ¢ V/#T>2 (1 — ¢") can be generalized, leading to a function that is invariant under
a subgroup of T'g(N) of index 2.

Using the theory developed in this chapter, many identities involving these functions can be easily ob-
tained.

4.1 Definition of modular forms on I" with [I'(1) : ['] < oo

Extend the action of SLy(Z) to include Q U {oo} by setting
a b p\ _ ap+bg
c d q) cp+dq

We will also set H=HUQ U {oo}. B
We need to make sense of the order of vanishing of a function on the quotient H/I"

o
Qo
~~
/|\
ol
~_
Il

o
QU >
~__
B
Il
IS

Definition 4.1.1. Let [['(1) : I'] < oo and let f be a non-constant function such that flary = f for all
M € T'. We define the invariant order of the function f at a point 79 € H with respect to ' as follows.
(Note: ¢, #0.)
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1. For any 1y € H,

ord,, (f,T') = where f = Z Cn (T —T0)™
| TO‘ m>n
Points where |T,,| = 2 are called elliptic points of order two, and these only occur at points in

['(1)(i). The size of the T'-equivalence class of elliptic points of order two is denoted by es.
Points where |T,,| = 3 are called elliptic points of order three, and these only occur at points in

F(l)(e(%)). The size of the I'-equivalence class of elliptic points of order three is denoted by es.

2. For 1y € Q, let o € T'(1) be such that 7y = a(oc), and let h € Zsq, the width of the cusp Ty, be

defined by
(" Ta)e = ((41))
Then,
nif (a7 Ta)e = £((§1)) and fla = 3,5, cma™
n if (a7 ) = (+(3 7)) and fla = mncmq%
OrdTO(f,F): ( . ) < ((1)}1L)> f| Z > m
noif (a7 Ta)e = (=(§1)) and fla=2_,5, cmq* and k even
; o = (~(3
2

if (@' Ta)oo = (—(§ 1)) and flo =35, ma and k odd

These points are called cusps. The size of the I'-equivalence class of cusps is denoted by €. When
the last condition is satisfied, the cusp is called irregular, otherwise it is called reqular, the sizes of
the T-equivalence classes of theses sets are denoted by €2 and €<8.

Definition 4.1.2. If [['(1) : T] < oo and a € Q, let hr(a) be the width of the cusp o for T'. The level of

I' is the least common multiple of all cusp widths. That is,
level(I') = lem({hr(a)},cq)-
Definition 4.1.3. Suppose that f|M,k = f for all M € T.

{f | Veenord (f,T) > —oo and V, g ord,(f,T') > —oo},
M(T) = {f | Vremord,(f, 0 and V_gord (f,T') > —oo},

Ap(l) = I)
() = (f,1) >

My(T) ={f | Vremord.(f,I') > 0 and V_gord.(f,T') > 0},
() = (f,I)=>0 f,T)
() =

Se(T) ={f | Vremord, and ¥, cgord,(f,T) > 0},
Ep(T) = Mi(T)/S(T).

For an example of an irregular cusp, take I' = T';(4). The cusp % is irregular. In this case % =(

soa=(39) and
P SR WU S B
“No 1) — —4h 4142k )
1 A\ o ([ -142n —h
“No 1) — +4h  —1-2h )"

Thus, we see that (o 'T'1(4)a)w is generated by —(§ 1), which means that 1 is an irregular cusp of width
1 for I'y(4). Furthermore, for the cusp 0 = a(c0) Where a =S, the computatlon

“(o1)=(40)

shows that  is a regular cusp of width 4 for I'; (4).

9

N —
=Oo
~—
—~
~
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4.2 Dimension formulas

Proposition 4.2.1 (Valence Formula). If f € Ax(T") is not constant, then

_ K[T(1) : T
Z ord,(f,T') = 0

T€H/T

Proof. Let d = [['(1) : T] and let My,..., My be a list of representatives of I' I'(1). First assume that k

is even and define
7) =[] flar,a(7)
J

and note that g € My4(I'(1)). The valence formula for I'(1) now reads as

ELC(1):T
orde(g,1'(1)) + Z ord,(g,I'(1)) = %
T€H/T(1)
We will deal with the points of finite order first.
ord,( Z ord.(f]a;)
= ordu,.(f)
j=1
(1),
-y Eodaa)
2&(I'(1)7)/T z

T€H/I(1 T€H/T(1
- Z T r)
2€H/T T
= ) ord.(g.T)
2€H/T

For the cusps, we have the easy equality

ordeo(g) = Y ord.(f.T).

For odd k, we can apply the formula to ¢2, and using
ord,(f?,T) = 2ord,(f,T),
we see that the formula is valid for odd k as well. O]

Proposition 4.2.2 (Genus Formula).



Proof. Set d = [T'(1) : T]. Define f : H/T' — H/I'(1) via the natural projection to the fundamental
domain for I'(1). Triangulate the domain for I'(1) with

[F'| =2
[E'| =3
V=3

with a vertex at i, e(%) and co. Pull back this trangulation via f~!. For the triangulation of a fundamental
domain for I', we have

|F| = 2d
|E| = 3d
0, if z is an elliptic point of order 2
VIiewtd— >0 0 = O PO S
iyl 1, if z is not an elliptic point of order 2
0, if z is an elliptic point of order 2
td- Y o PHe pomt ©
.| 2,if 2 is not an elliptic point of order 3
z€f 1 e(3))

Therefore, |V| = ex +d — 5(d — €2) +d — 2(d — €3) and the formula for the genus follows from 2 — 2g =
[El =Bl + V], 0

We next simply quote the dimension formulas from [6, Ch. 3], as the derivation requires the Riemann-
Roch Theorem from the theory of Riemann surfaces. If we need the dimension of any specific one of
these spaces in the future, hopefully we can give a self-contained argument.

Theorem 4.2.3. We have

1. Dimension formulas for k even:

(k—1(g— 1)+ 5+ [Eles+Eese b >2
dim M, (') =< 1 k=0,
0 , k<0
(k—1D)(g-1)+ Se+ [ta+(E—1) e k>4
dlmSk(F) = g , k=2 ,
(0 , k<
(600 )k_
€oo — 1 k=2
d. E F: x )
im E () ) e
L0 , k<O
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2. Dimension formulas for k odd and —I ¢ T (e3 = 0 in this case):

(k=19 =1+ [fleo+ [Ee + b+ 55t k>3

dim M,(T') = § > €58 (equality if €28 > 29 — 2) k=1,
0 k<0
((k=1)(g—1) + [fle+ [§les + 528 + 55Hels k>3

dim Si(T) = { dim M;(T) — Jee k=1,
0 , k<O

dim Ey(T") = %eggg L k=
0 k<0

Set

P(N) ={M eT(1) | M = (5]
I(N) ={M eT(1) | M= (57) mod N},
Lo(N) ={M eT(1) | M = (52

Proposition 4.3.1. For I'(N), we have

1. [[(1) : T(N)] = | SL(Z/NZ)| = N* ], (1 . i).

]72

(1) : T(V)] = {%Ng M (1-3) V=3
6 N =2
2. Two cusps ay/c1 and ag/co (ged(az, ¢;) = 1) of I'(N) are equivalent when.
(a1, c¢1) = £(as, ¢3) mod (Z/NZ)>.
The total number of cusps is

o %N2HP‘N<1—#> Nz3
3 N=2

3. There are no elliptic points.
€g = €3 = 0.

Proposition 4.3.2. For I'y(N), we have

1. [T1(N) : T(N)] = N.
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2. The number of cusps is given by

13 n O(d)(N/d)
€o =1 3
2

3. The number of elliptic points of order 2 is given by

, N >4
;N =
, N=23

1 ,N=2
€y — .
0 ,N#2

4. The number of elliptic points of order 3 is given by

1 ,N=3
€3 — .
0 ,N+#2

Proposition 4.3.3. For T'4(N), we have
1. [To(N) : T1i(N)] = ¢(N).

(1) : To(N)] =N [] (1 + %) .

p|N

2. The cusps are enumerated by ¢ with ged(a,c) = 1 and ¢|N and where the a’s are chosen in the
interval 1 < a < ¢ to be inequivalent modulo ged(c, N/c). Since for d|c the reduction map (Z/cZ)* —
(Z)dZ)* surjects, the number of choices for a is ¢(ged(c, N/c)).

€oo = Y _ d(ged(c, N/c)).

c|N

The width of the cusps with denominator ¢ is N/(cged(c, N/c)).

3. The elliptic points of order 2 are enumerated by (Y 1)(:) where k (taken modulo N) ranges over

the solutions to k> +1 = 0 mod N.

a={ll )

0

-1

. e elliptic points of order 3 are enumerated by e(z)) where k (taken modulo ranges over
4. The elliptic points of order 3 db?k éhkk dulo N

the solutions to k> + k 4+ 1 =0 mod N.

Proof. We will show (1) and (2) just for prime N = p. The full discussion for any N can be found in [6,

Ch. 3]. Since

4N
JA|N

The number of cusps is



any rational number with denominator divisible by p is equivalent to % while the other rational numbers
are equivalent to % Thus, since % has width p and % has width 1,

(1) : To(p)] = p+ 1.

(3). Let us first show that, with g = (2 5) € I'(1), the points g(¢) with non-trivial stabilizers in I'y(V)
are all o(N)-equivalent to My (i) with M = (Y !). We can compute that

o1 ac+bd —a®—b?
929 T\ 24 —ac—bd )’

so any ¢(7) with non-trivial stabilizer in T'o(/N) must have ¢+ d? = 0 mod N. Since ¢ and d are relatively
prime, this means that ¢ and N are also relatively prime. Now,

a b\ [ak—0b a 0 -1
(c d)_<ck—d C)(l k )
Since ¢ and N are relatively prime, we can find an integer k so that ck — d = 0 mod N, thus showing
that ¢g(i) and My (i) are ['o(IV)-equivalent.
If My (i) has a non-trivial stabilizer in I'o(N), we need k*+1 = 0 mod N. Let us show that when £ is as
such and is taken modulo N, these points are inequivalent under I'o(N). Suppose that My, (i) = hMy,(7)

for some h € T'o(N) with k¥ + 1 = k3 +1 =0 mod N. This means that M, S*M,.' € To(N) for i =0 or
1. As

_ 1 0
MleOMk?l - < ko —ky 1 ) ’

—k -1
1a—1 _ 2
My 5" My, = < kike +1 Ky ) ’

we see that k; = ky mod N since kiky = —1 mod N is equivalent to k; = k; mod N because k2 =
—1 mod N.

4.4 General properties of A;(I")

The proof of the follow proposition follows exactly along the same lines as the proof of Proposition 3.2.2.
Proposition 4.4.1. Suppose k is even and f € Ax(T).

1. If C is an elliptic point of order 2 then

k
5 +2ord¢(f,I') = 0 mod 2.

2. If ¢ 1s an elliptic point of order 3 then

k
5 +3ord¢(f,I') = 0 mod 3.

It follows that for functions in Ag(I") the order should be measured in the variable

r—z\ Tzl
=)= 2z e H ’
exp Zla (1) , z = a(c0), his cusp width
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called the local variable at z € H, and all function will have expansions in integral powers of this variable.
In the case of the cusp oo, this variable is also ¢'/".

As with elliptic functions, we usually refer to the number of poles of a function as its order, but
according to the following definition this number is also the number of times the function takes any
complex value.

Definition 4.4.2. If f € Ay(T') then the number of solution to f(T) = ¢ counted according to multiplicity
for any ¢ € Cy, is independent of ¢ and is called the order of the function f, also denoted by ordr(f).

Proof. The number of zeros of f(7) — ¢ is equal to the number of poles of f(7) by the valence formula,
so ordp(f) is well-defined. O

Definition 4.4.3. If f € Ao("), define the ramification index ram,(f,T") € Z~q by

ord,(f — f(2)) , f(z) # o

vam(f,I') = {—ordz(f) , f(2) =00

Proposition 4.4.4. If f € Ay(T") and g is the genus of H/T, then

> (ram.(f,T) — 1) = 2(g — 1 + ordp(f)).

2€H/T

Proof. The is a special case of the Riemann-Hurwitz Formula where the target space is C. It may
be proven exactly as the genus formula was obtained (in fact the genus formula is this with f = j so
that ordp(j) = [[(1) : T]). One triangulates H/T' with vertices at the finite number of points z where
ram,(f,I') > 1. O

Proposition 4.4.5. Sy(I') = {0} and My(T") = C.

Proof. The first assertion follows from the valence formula. For the second, if f(7) = ¢ + O(q'/") where
h is the width of the cusp oo, then f(7) — ¢ has a zero at oo and is still an element of My(I"). The valence
formula then implies that f(7) is constant. O

Proposition 4.4.6. If R is a rational function of degree d and x € Ay(I"), then
ordr(R(z)) = dordr(x).

The function z in the following proposition, if it exists, is called a Hauptmodul for I', and all Haupt-
moduln for a given I' differ by a Mdbius transformation.

Proposition 4.4.7. Suppose that x € Ay(I') with ordr(x) = 1.
1. x : H/T — Cy is a bijection and g = 0.

2. If y is another non-constant function in Ao(L'), then there are polynomials p;(x) such that po(z) +
pi(x)y = 0. Specifically, there is a constant ¢ such that cy = [[ g r(z — 2(2)) =00 where the
possible term from the pole z of x is omitted.

3. Ap(I") = C(x).
4. 51(I) = 5(T) = {0}
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Proof. (1). (1) — ¢ has one pole so it has exactly one zero by the valence formula. The proves that
x defines a bijection. Suppose that ¢ > 0. Then there is a loop on E/ I' that may not be contracted
to a point. However, the image of this loop on C, is contractible. This is a contradiction because the
contraction of the loop on C,, may be pulled back (via 7!) to a contraction on H/T.

(2). Define

o7) =~ I (alr) — a(z)r=0n

z€H/T

z(z)F#00

Since (1) — z(z) has a simple zero at 7 = z (as measured in the local variable at z), for all z = H/T" we

have ord,(g,I") = 0 expect possibly at the unique pole of the function x. However, if z is this pole, the

valence formula implies that ord,(g,I') = 0 as well. Thus, g € My(I") which consists entirely of constants.
(3) is then a direct consequence of (2).

(4) If f € S5(I") then define
_ S
9(7) = dz/dr’
That g(7) € Ap(T) is essentially Lemma 3.4.4. Let z € H not be a pole of # and p = |T'.| and let ¢ be
the local variable at z. Let ¢; denote certain non-zero constants (that could depend on z). Recalling that
1

(1) — z(z) has a simple zero at 7 = z, we see that dz = (¢; + O(t))dt. Since dr = t» " (cy + O(t))dt, we
have

Since, by definition of Sy(T"), ord,(f,I') > 0, and we have ord,(f,T') =1 — }17 mod 1 by Proposition 4.4.1,
g(7) does not have a pole at z. If z is a pole of = then the only thing that needs to be changed in this

discussion is that dx = t=%(cz + O(t))dt, and so we see that g(7) has a zero at z in this case.
Next, if z = (2%)(c0) € Q, let ¢ be the local variable at this cusp z. We have

F7) = (a— enED) e, + O1)
dr = (a —c1) 2t esdt

dp — (e + O(q))dt , z is not a pole of x
|t 2(e;+0O(q))dt , z is a pole of = '

Thus we see that g does not have a pole and actually vanishes at the pole of z. Since g was an element
of Ayp(T"), this means that g mush be identically 0. Therefore, So(I') = {0}. The square of any element
of S1(T") is in Sy(T"), so S1(I") = {0} as well. O

Proposition 4.4.8. Suppose that x € Ay(T') with ordr(x) = 2.

1. Any three functions in Ao(I") are linearly dependent over C(x).

2. If y is a function of odd order, then there is a unique irreducible polynomial P(xz,y) of degree 2 in
y with P(z(7),y(7)) =0, and we have Ay(I") = C(z,y)/(P(x,y)).

Proof. (1). By Proposition 4.4.4 there is a ramification point of the function x because
> (ram.(z,T) = 1) =2(g + 1) > 0.
2€H/T

Since none of the assertions of the proposition are affected by applying a Mobius transformation to x, if
necessary, we can let z be such a ramification point and replace x by 1/(x — z(2)) to assume that x has
a single double pole at some point z.
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Let L(m) denote the vector space of functions that have poles only at z and the order of this pole is
< m. Clearly,
dim L(m) < 1+ m.

Let f1, fo, f3 € Ao(T') and assume that they are linearly independent over C(z). We can find polynomials
pi(z) so that p;(z)f; has no poles outside z. This means that there is an integer mg such that, for
i=1,2,3,

For any integer m > my, the set

{x]pz(l‘)fz} i=1,2,3

0<j<m—mo

consists of 3(m—mg+1) linearly independent functions in L(2m). This contradicts the bound dim L(2m) <
1+ 2m for large m and shows that fi, fo, f3 are linearly dependent over C(x).

(2). Let y be a function of odd order. By multiplying by a suitable polynomial in x, we may assume
that y has no poles outside of z and that y has a pole of odd order at z because multiplying by a
polynomial in x changes the order of y by an even integer. Then, it is easy to see that 1 and y are linearly
independent over C(x), for suppose that there were polynomials py(z) and p;(x) with

po(z) + p1(z)y = 0.

If p1(x) # 0, then the Laurent series expansion of py(x) begins with ¢ to a negative even power and
p1(2)y begins with a negative odd power. Thus p;(z) = po(z) = 0 and 1 and y are linearly independent
over C(z). We can get the quadratic relation by applying (1) to the three functions 1,y,y? Finally, if
f € Ap(l'), apply (1) to the three functions 1,y, f. O

Proposition 4.4.9. If x € A(T") with | = ordr(z), then any | + 1 functions in Ag(T") are linearly
dependent over C(z).

Proof. Suppose = has poles at ¢, ...,q. and that the orders of these poles are nq,...,n,. Assume that
there are [+ 1 functions fi, ..., fi;1 that are linearly independent over C(z). Let L(m) denote the vector
space of functions that have no poles outside ¢y, . .., ¢, and having a pole of order not worse than mn; at
each ¢;. Clearly, dim(L(m)) <1+ mny + -+ mn, = 1 +ml. We can find polynomials py, ..., p, with
p1(z) f1,...,pr(x)f- each having no poles outisde of q,...,q.. Therefore, for some fixed mgy, we have
pi(x) fi € L(myg) for every i = 1,...,1+ 1. Tt follows that

{x]pz(ﬂl?)fz} i=1,...,1+1

0<j<m—mo

consists of (m — mgy + 1)(I + 1) linearly independent functions in L(m), which contradicts the bound
dim(L(m)) < 1+ ml for large m. O

4.5 Working with finite index subgroups of I'(1)

This section discusses several of the representations of a finite index subgroup, I', of I'(1). The first and
most intuitive way is via the combination of a fundamental domain for I' and edge-pairing matrices, as
given in the following theorem.

Theorem 4.5.1 (Siegel). If [['(1) : T'] < oo, there is a connected fundamental domain D for T' in which
the sides of D can be paired up by elements of I', and the elements of I that the pair up all of the sides
generate I'.
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Unfortunately, the generators in this theorem are not guaranteed to be independent. For example S
and T pair up the edges in the usual fundamental domain for I'(1), but S and 7" are not independent
generators. We will describe the so called Farey symbol for subgroup I' of I'(1) of finite index, which
allows a list of independent generators to be easily computed (see [13] and [12]). We will also describe
the bicuboid graph for I'" as well, and find the following correspondences:

1. fundamental domains with side pairings = subgroups (onto, many-to-one)

2. Farey symbols = subgroups (onto, many-to-one)

3. bicuboid graphs < conjugacy classes of subgroups (bijection)

4. marked bicuboid graphs < subgroups (bijection)

5. marked bicuboid graphs with cuts < Farey symbols (bijection)

We will first define all of these terms appears in these correspondences.
Definition 4.5.2.

1. Label the following points in H:

(a) An even point is the image of i under some element of T'(1).
(b) An odd point is the image of e(3) under some element of I'(1).

(c) An cusp is the image of oo under some element of I'(1).
2. Label the following half arcs in H:

(a) An even edge is the image the set {e(3) + it | t > 0} under some element of I'(1).
(b) An odd edge is the image the set {e(g) + it | t > 0} under some element of T'(1).
|

(¢) A free edge is the image the set {e(t) | ¢ <t < 3} under some element of T'(1).
3. A special polygon for I is a convex hyperbolic polygon P satisfying:

(a) The boundary of P consists of even and odd edges.

(b) The even edges come in pairs, each pair forming an arc connecting two elements of Q. Fach
arc is either paired with itself under T' (in which case it contains an elliptic point of order 2)
or is paired with another such arc under T'.

(c) The odd edges come in pairs, each pair meeting at a vertex with angle 2w /3, which is an elliptic
point of order 3 for T'.
Definition 4.5.3.
1. A bipartite cuboid graph (or bicuboid graph) is a finite connected graph such that

(a) Every vertex is marked by either e or o. These are called odd and even vertices, respectively.
(b) Every odd vertex has valence 1 or 3.

(c) Every even vertex has valence 1 or 2.

(d) There is a set cyclic order on the edges originating at each vertex of valence three.

(e) Every edge joins an even and odd vertex.
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2. A marked bicuboid graph is a bicuboid graph with a distiguished edge.
Definition 4.5.4. A Farey symbol is a symbol of the form

-1 o @ e ]

Vi
S

S

4 )
0 p1 cg P ¢ m pn-1 Cp, pn 0

where one of the 2= is 0. The pairing symbols p; are allowed to be natural numbers or one of symbols e
or o and we alwayg have a;y1¢; — a;ciyqp = 1.

A natural number n, if it appears among the p;, appears exactly twice at two edges, say, p; and py. In
this cases, the edges p; and py are said to the paired by a free pairing.

If p; = o, the edge is said to be paired with itself by an even pairing.

If p; = e, the edge is said to be paired with itself by an odd pairing.

Define the pairing matriz for even pairings, odd pairings, and free pairings, respectively, as

—1
. a; @Git1\ _ [ Gis1 G 0 -1 Qit1 @ 7
Ci °  Citl Cit1 G 1 0 Cit1 G
—1
G, @i @it1\ _ [ Gip1 @ 0 -1 aiy1 G ;
C;i * Citl Civ1 G 1 -1 Cit1 G
~1
a; Air1 Qg k41 apy1 Qg 0 —1 Air1 Q4
Gi’k — S 7 s T 7 - .
G n Cie1 Ck n Chad Chy1  Ck 10 Cit1 G

In this section will we assume that all matrices are taken modulo £/ since we are concerned with

their action on H and mercifully suppress the lines on the groups. In addition to the matrices S = (°h

and T' = (} 1), the matrices
1 -1 10
o=(1 o) =)

will be useful. The main result which is useful for studying subgroups of I'(1) is the result that I'(1) =
ZQ * Zg.

Proposition 4.5.5. For I'(1), the matrices S and O are independent generators of orders 2 and 3, that
is, each element of I'(1) can be written uniquely as a word in S and O with no two consecutive S’s and
no three consecutive O’s.

Proof. Exercise. Hint: OS = (} 1) and OOS = (19). O

Exercise 4.5.6. Show that S and T™ generate a subgroup of finite index in I'(1) only when |n| = 1,2.
Hint: for n > 3 assume the opposite and consider (OS)"OOSO for large m.

Remark 4.5.7. Let xy'(z)/y(x) = x + 2% + 423 + 82" + 52° + - - - be the formal generating function for
subgroups of I'(1) of a given index. It is possible to show ([14]) that y(x) satisfies the differential equation

o (2® — 1)y (x) + (42° + 227 — 42° — 22" — 42® + 1)y/(2)
+(22% + 22° — 42® + 2* — 42® — 42® — 2z — 1)y(x) = 0.
It is possible to give an explicit algorithm for writing a given M € I'(1) as a word in S and O. If

M = (%), then the even point M (i) is part of an arc that connects the two cusps ¢ and C%. Let M, be
the matrix we wish to write in terms of S and O. At each step of the following algorithm, a, b, ¢, and d

denote the entries of M.

if M, =1 or S, then terminate
if —oo< %,5 <0, then M1 = SM;,
if 0< 2,5 <1, then Myy1 = OM,
ifl1< %,% < o0, then My, = OOM;
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This will terminate, in which case M, ' is expressed as a word in S and O and so M is as well. In the

following diagram, H has been mapped into the unit disk, and the free edges E have been marked with
the matrix that sends E to the free edge between 7 and e(3).

Proposition 4.5.8. Let [['(1) : '] = p and ¢ denote the homomorphism I'(1) — Sym,, obtained by the
permutation action of g € I'(1) on the left cosets T'(1)\I'.

1. T is completely determined by ¢(S) and ¢(O) up to a relabeling of the non-trivial cosets as long as
¢(S) and ¢(O) have order 2 and 3, respectively, and generate a transitive subgroup of Sym,,.

2. The number of fized points of ¢(S) is €.
3. The number of fized points of ¢(O) is €.

4. The number of cycles in ¢(T') is €. The lengths of these cycles are the widths of the inequivalent
cusps of I

5. The order of the permutation ¢(T) is level(T).
As an example of this correspondence, we list the subgroups of I' of index 3.

Example 4.5.9. For the 4 groups of index 3 in T'(1), namely T3, T°(2), Ty(2), Ty the corresponding
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marked bicuboid graph, special polygon and Farey Symbol are shown below.

I3 T9(2) To(2) Ty
X
X
% X
S=(1)2)(3) S = (12)(3) S = (13)(2) S = (23)(1)
0 = (123) 0 = (123) O = (123) O = (123)
— 1 1 1 e
1 1
TOTOTET TETETOS TETETOS ERASRRS Rnty

Any relabeling of the edges for T® produces isomorphic graphs because T is a normal subgroup of T'(1).
The remaining three graphs are distinct because the position of the marked edge, the edge marked “X7,
1s distinguished by the orientation on the odd vertex. This marked ege is placed by default along the free
edge from i to e(}) in the special polygon.

From Proposition 4.5.8 we can construct the correspondence between bicuboid graphs and subgroups
[ of I'(1), which we illustrate for a group of index 9. Let ¢ : I'(1) — Symg be defined by

¢(0) = (123)(456)(789),
¢(5) = (24)(39)(67).

The group I is then defined as the set of all g € I'(1) such that ¢(g)(1) = 1. This marks “1” as the coset
I'in I'(1)\I'. The corresponding graph (whose ordering on the trivalent vertices is counter-clockwise) is
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This bicuboid graph has one edge marked with an “X”, making it into a marked bicuboid graph. Note
that marking any of the other 8 vertices gives rise to a total of only 3 distinct marked graphs, hence there
are two other subgroups of I'(1) that are conjugate to this I

We can read much of the data for I' directly from this marked graph. First, we see that ¢(O) =
(123)(456)(789) has no fixed points, so €3 = 0. Next, ¢(S) = (24)(39)(67) has three fixed points, so
€2 = 3. By multiplying the permutations, we have ¢(7T') = ¢(0OS) = (145783)(296), so €5, = 2 and the
width of these two cusps are 6 and 3. To find generators, first note that the graph has a cycle, but that
if the vertex between edges 6 and 7 is cut, the cycle is broken the the resulting cut graph is a tree. There
is now a unique path from the marked edge to any edge that does not cross over from edge 6 to edge 7.
The path from the marked edge to the edge labeled i corresponds to a matrix, and we have

Mlzl, M4:SO, MQISOO,
My, =0, M;=050, M;=0500,
M; =00, Mg= 0050, Mg=00S00.

Free generators for I' are then M{ISMG, M;YSM,, ME)_ISM5, and Mg_lSMg, and so I' ~ Z  Ziy x Ly % Zss.
In order to construct a special polygon and Farey symbol for this I, we first agree to make a cut between
edges 6 and 7, as before, so that the resulting graph is a tree. Next, we place the marked edge on the
free edge from 7 to e(%) in H, and let the remaining edges fall naturally onto their respective free edges
in H. The result is

0 12 1 2

Therefore, the cusps in the Farey symbol are oo<—>%<—>%<—>l<—>%<—>oo. In order to fill in the pairing infor-

1
0 0,.1

mation, note that the even points in the arcs co<+7, 745, and %(—)oo are all elliptic points of order 2
for T" since ¢(S) fixes each of the cosets labeled 1, 5 and 8. This means that each of these three arcs is
paired with itself. Finally the arc %H% is paired with the arc %H% in order to glue back together the cut
that was made between the edges 6 and 7. In summary, a Farey symbol for I' is given by

> —<—>00Q.

\0/ \1
00011\021/1\110

We could have made one cut between edges 2 and 4 or 3 and 9, so there are in total two more Farey
symbols corresponding to this subgroup I'.

Algorithm 4.5.10. Input: a finite index subgroup I' of T'(1). Output: a Farey symbol for T.
Step 1: If [I'(1) : '] <2

return

ol‘ o||
[u
o RO

—
o
—
.



Step 2: Let F be the partial Farey symbol

Tl 1e— 1t (1 Her
F= -1, 1 0 L1 1 -1 T
o T 1 s -(io)E

Step 3: For each unpaired edge in F, check if it can be paired with itself by an even or odd pairing
(G; € T') or if it can be paired with another unpaired edge (free pairing G, € I') and fill in all of the
possible pairings.

Step 4: If all edges are paired, then return F.

Step 5: If there is still an unpaired edge in F between, say, a;/c; and a;11/ciy1, place an new vertex
(a; + a;iv1)/(c; + cip1) in between with no pairing information on the two adjacent edges and goto Step 3.

Given a special polygon P, we may convert P to a Farey symbol F' and vice-versa. If P is a special
polygon, we assume that that oo is included as a vertex and that there are certain rational vertices
‘;—8 < -+- < 2. These are put into [ in the obvious way with the corresponding pairing information.
Note that we have a;11¢; — a;c;v1 = 1 because the quantity a;.1¢; — a;c;11 is unchanged when % and

Z—ﬂ are simultaneously acted upon by some element of I'(1) and a;41¢; — a;¢;41 = 1 for the basic choices
2

a =1 ait1 0

o= and ) T 1

Now given F, we can convert to edges of P in the following way (set g = (i1 & )).

Gi ¢y Zitl
w o }@Q(EU(O?)(Z)), E={e(})+it|t>0}

¢ o Cigl

a; Qit1
(2 K

L T e g(BU (YD), E={el}) +it[1>0)

Theorem 4.5.11.

1. If P is a special polygon, then the edge pairing matrices {g;} generate some ' and P is a fundamental
domain for T.
There are €5 generators of order 2.
There are €3 generators of order 3.
There are 2g + €x, — 1 free generators (order 0o).

2. The g; are an independent set of generators for I'. This means that any element of I' can be written
uniquely as Hgke{gi} g,k where e, # 0 and ey, is further restricted to 1 < e, < p if gi is a generator
of finite order p. In symbols,

[~ 752 % 257 * 7291 eo0)

Proof. See [12]. O

4.6 T(2)

The main function for the group I'(2), which play the same role as j(7) plays for I'(1) (the so-called
Hauptmodul), is the modular A function defined by

w0=(53)"

Proposition 4.6.1. Let A\(7) be the modular A function. Then,
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1. XN

) € My(T'(2), 3,035,081 € My(I'(2))
A7)

2. has a simple pole at * 1, a simple zero at 1 5, and takes the value 1 at %
5. A(T(2)) = C(N).

4 Su(T(2)) = ©;0;01M;6(I'(2)).

5. 03 =05+ 4.

6. Mp(P(2))= & Co30.

Proof. (1). The fundamental domain {7 | |Re(7)| < 1 and |27 £ 1| > 1} for I'(2) shows that T'(2) is
generated by T2 and ST?S. From Proposition 2.8.3, we have

(©2,03,04)|r = ({102, 03,0y),
(@27 637 @4)|S - C8_1(®47 @37 ®2>
Therefore,
(02,03,04)|12 = ((4O2, O3, 04),
(©2,03,04)|s725 = ((102, (O3, 0,).

and we see that ©3/03 € M} (I'(2)) because Exercise 2.12.4 shows that A has no poles or zeros in H.
(2). For the values at the cusps, we have the table

cusp function g¢-series

I
% A|I %—2q1/2+
0 A 9_3_1
1 s o1 +
‘o1 _
% Alrs _6_2:_%(1 12 ...

(3). Since ordp(z)(A) = 1 all of the assertions of Proposition 4.4.7 apply.
(4). Since ©30307 has a simple zero at each cusp, we must obtain Sy in this way.
(5). The form ©34+01—01 = O(¢*?) in My(I'(2)) has a zero of order at least 2 at oo which contradicts
the valence formula unless this function vanishes identically.

(6). First note ©5 and O are algebraically independent. If f € M, (I'(2)) with £ > 0 and even, then
g := f/O2% € Ag(T'(2)) with the only possible pole of g located at the pole of A. Therefore, part 2 of
Prop 4.4.7 shows that g is a polynomial in A of degree no more than k/2 since the valence formula says
that f has k/2 zeros (hence g has no more than k/2 zeros). O

4.7 Building congruence modular forms N from Klein Forms

A subgroup I of I'(1) is called a congruence subgroup if I" contains I'(/V) for some N. The smallest such
N turns out to be the level of I in this case (see Proposition 4.13.4 below). Similarly, a modular function
f is said to have level N if it is invariant under I'(N). Most subgroups of I'(1) are not congruence; let a,,
denote the number of subgroups of I'(1) of index n and let b,, denote the number of congruence subgroups
of I'(1) of index at most n. Then it is known ([14], [15], [19]) that

1 1 1 1 1
ap, ~ exp (énlogn— én—i—nl/Q +n'/3 4 élogn— - — 510g27r) ,

4
2
21 log?
log<bn>~<f ) o 1

2 loglogn’
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One of the building blocks of modular forms of higher levels is the Klein form €7(7), which is defined
for ¥ € Q? 7 € H and has weight —1 and generalizes n(7)™2. We will also introduce a form of positive
integral weight k by ¢&(7) which generalizes the Eisenstein series Eoy (7). Set

r(T) = —2mize™* H (1 + g) e,
weN

1 1 1 1
RN _ -
QF(T)_QM' <Z+Zz—|—w w)’

Qe

k (k—1)! 1
k() — k>2
)= gy 2w P22

where A = Z7 + 7Z and z = r17 + 9 and the sums or products over w = m7 + n are performed over n
first and then m. These sums are not defined if 7 € Z2, in which we take out the undefined term and
obtain the definitions

, for 7 € 72

C(1—k)Ek(T) ,keven
0 , k odd

The function €7(7) is a specialization of the Weierstrass o function for the lattice A = Z7 + Z, which

is defined as . )
- 1 —) Stee
o(z|lt) == H ( _)ee

weN

The product is absolutely convergent. In Exercise 2.12.8 we had, for (2%) € I'(1) and integers A, B with
w=AT+ B

_€§E2(T)z2
o(z|t) = W@mzlr),
z |aT+b\ 4
o <cr—|—d c7'+d) = (et +d) o(z|7),

olz+wlt)  ars AB,  (6A + miBy(T)w)(22 + w)
S e E )

Thus the following relations are clear (when z = ri7 + r5).

. 72,2
(1) = —2mie™ 17”5 B2 (2|7),
1 2 d
2mies(T) = —EEQ(T)Z + - log o (z|7),
12,2 m? d?
(2mi)“ex(T) = EEQ(T) 3 log o (z|7).

Using the Jacobi triple product identity in these relations give the following proposition.
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Proposition 4.7.1. Set z = ri7 +ry. The Klein forms have the series expansions,

=172 (@2 @) o040/ 025 @) o
E,:‘(T) _ qg 1)/2( ) ( / )

(¢:9)2%
1 q: +1 C n —-n "
Lir)=-2— — — <1
1) = 3Dy nzl(qz 0. )1 e Jor Il <1,
ex(1) = G 1 + Z ¢ +q.") 57—, for|m| <1,

3 qz(qz + 1) OO n —-n n2qn
eF(T) = - (q,z — 4, ) ) fOT |7"1| < ]-7
(g — 1) 2 1—qn

n=1
where ¢51(7) is formally obtained from ¢&(7) by applying = 82
Note that the classical identity [1, Entry 3.2.1],
(a3 i (=1)rgritr?
(%3 @)oo (0/ 73 @) 1—agm

n=—oo

allows us to recognize the transformation properties of the sums of the type on the right hand side of
this identity, since it is essentially the reciprocal of a Klein form.

Proposition 4.7.2. For N > 1,

N—-1 2
. w-1)-nnNT)®
jOEJtN]]\](T) AN n(T)ZNEﬁ’%(NT%
N-1
n(NT)?
bo (1) =N
j:1 N’'N <T>2N

Proof. Using the ¢g-product representation of the Klein forms, we see that these follows from the identity

N-1

H(l—Q{,xi)zl—xW.

J=0

The modular transformation and quasi-periodicity relations for the ¢ function give the following.

Proposition 4.7.3. For 7= (ry,r2) and g = (%) € I'(1),

brlg(T) = trg(7),
ex,(7) = e}?_g(T) + c(at + b)ry + c(er + d)ra,
Hal(r) = &,(7) — 5
elg(7) = iy (1), k>3
If (ny,ns) € Z2,
—LymtmeEmn2e (2 (ring — rana) )Ex(T),

EF—!—(m,nz)(T) = (
2717+(n1,n2)<7_) =¢

e7]§+(n1,n2) (7_) =¢



Proposition 4.7.4. If gcd(a,c) = 1, then

orda £(r) — <frac(F.2(a, @T)))

where frac(x) denotes the fractional part of x that satisfies 0 < frac(z) < 1.

Proof. Note that with z = ur +v

o : (4:9)%

ol — D ) /2y LT+ V) Doo(e(T — uT — )i @)
= e((u—1)(ur +v)/2) e
= e((u— 1)0/2>qu(u71)/2 (e(v)q"; @)oo (e(—v)q

(¢ 0)%

1—u

@)oo

If 0 < u < 1, then the lowest power of ¢ in this expression is ¢“(“~1/2. For general real v we can shift

u by integers without chaninging the order. Finally, the general proposition follows combining this with
Proposition 4.7.3. O

Proposition 4.7.5 ([11]). For 7= (r1,r2) € ~Z2,

1. For k= —Y"_.m(F), the form [[&-(7)™" is in Mj(T(N)) if and only if

> m(F)(Nr1)* = 0 mod N ged(2, N),

—

T

Zm 7)(N72)? = 0 mod N ged(2, N),

Zm )(N71)(Nrg) =0 mod N.

2. The form Y .m(F)eX(7) is in My(L(N)) if and only if Y _.m(7)r; = 0.
3. The form Y .m(F)e2(t) is in Ma(L(N)) if and only if Y .m(F) =
4. The form Y .m(F)ek() is in My(T'(N)) for any k > 3.

We will give a generator xy for the function field Ag(I'(N)) for N < 6 in Section 4.9. The following
theorem tells us that two ratios of Klein forms suffice for N > 6.

Theorem 4.7.6 ([9]). For N > 6, we have Ay(I'(N)) = C(xon(7), 23 n(T)), where

() — [ Bo (N
i El/]v,()(NT) '

Furthermore, xs n is integral over Q[xa n].

Exercise 4.7.7 (Representation of SLy(Z,) on C%). Let p > 3 be a prime and for 1 <n < 1 set

Ta(r) = ¢ 5" — (qz;iiz;(qp_i;qp)m. (4.7.1)
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1. Use the representation

Il
(g~

VBG T G (7))

and Proposition 4.7.5 to deduce that x,, € M}_,, (T(p)). Hint: p*> = 1 mod 24.
2

2. Set X(1) = (z1(7),. .. ,xqu(T)). Use the representation

33

o "\ ] ©lpr)

() =G ——

SIS
] |- +

and Proposition 2.8.3 to deduce that X|r = p(T).X and X|s = p(S).X where
i(i—p)

p(T>l,Z = Cp ? s p(T>l,j = 07

(—)) i

p(S)ij = 7 —¢ 7).

p—1

(=)= p
Hint: After applying S, you will have to dissect the 0-series in 110 to get a 0-series in pr.

3. We now have a homomorphism p : SLa(Z) — GLpT—I(C) that is defined on the generators S and T

as above and p(—I) = (—=1)PTV/2. By lifting the matrices modulo p, deduce that M s p(M) is a
representation of SLy(Zy,).

4.8 Building congruence modular forms from 7 products

Proposition 4.8.1. Let ged(a,c) =1 and M € Z**? with det M > 0. Then,

1 ged(M.(a,c)T)?
orde nlu(7) = 51 4
1

Proof. Tt suffices to prove this when ¢ = 7, that is,

d 2
ordes (ma1 T + m22)*1/277 (mua + m12) _ & (ma1, mar)

M1 T + Moo det(M)

For this, we seek a (25) € I'(1), such that

a b mi1 Mo . A B
c d mo1 Mo2 o 0 D '

The order will then be given by %. We obtain ¢ = m and d = m and the result easily

follows. O]

We record a simple fact here. If I'y > I'y, then

OI'dFQ(f) = Ol"dp1 (f)[Fl . Fg]
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Proposition 4.8.2. For any integer N > 1,
ordryv)(j(7)) = ordr, ) (F(NT)) = [['(1) : To(N)].

Proof. The function j(7) has a simple pole at each cusp %, which translates to a pole of order
with respect to I'g(IV). Therefore,

N
cged(e,N/c)

ondr (7)) = 3 e T

c|N
The function j(N7) has a pole at ¢ of order __ d(JZ ek ng(]c\;N)2. Therefore,
‘ N¢(ged(e, N/c)) ged(c, N)?
d = .
or FO(N)(j(T)) % Cng(C,N/C) N
These sums are the same by the substitution ¢ — N/¢ [

Proposition 4.8.3. Set I' = I'o(N) and suppose that f(7) =[],y n(7)" and that the three numbers

k:%ZT“ ords(f, 224257% ordo(f,T) _24ZN

IIN 1IN 1IN

are all integers. Then, for any g = (25%) € T with odd d, f satisfies

—1)k Nl|Tz|
f\g,w):(( ”3” )fm.

Remark 4.8.4. In the case that d is even, ¢ must be odd and we can recover the multiplier for such d by

_1)k JIr
f‘g,k(T): <( 1) HlIN >f(T)

c+d

simply be replacing T by T — 1.

Proof. Assuming d is odd, the multiplier system for 1 (Exercise 2.12.6) has the form

—|—b —c)+ac(l— 1
U(m—> B (Ffu) s A rae=B) i er ¥ dyn(r),

cT +d
ar +b\" MmN s tdbin —(ad?—atd) £ Nry il ,
o (lﬂ> ) (W Gy I (i(er + ) (i),
: ar+b _ _a(lT)+bl
since [£-5 = <X (r1d . Therefore
flor(T) " c?IH szlm| Cﬁdk+24dbordoo(f1“) 24(ad?—a-+d) & ordo (f,1)
f(7) |d| “

(G I

— y 7
since k, ords(f, '), and ordy(f,I") are all integers. O
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ngQ(ilc by Proposition 4.8.1, while the width of

gml—NcQ) as in Proposition 4.3.3. Using thls facts and Section

4.4, we can write down generators for ['((/V) for some N.

Example 4.8.5. I'((18). There are eight cusps %, %, %, %, %,% %, 118 The function

x = (1) *n(27)'n(37) n(67) 'n(97) 'n(187)?

For [ | N, the order of n(l7) at the cusp ¢ is glven by
this cusp with respect to I'g(N) is given by

can be verified to be in Ayg(T'o(18)) with a simple pole at 1 and a simple zero at %8. It is thus a Hauptmodul
for Ty(18). We can also write down a function with a simple pole at % and a simple zero at é

1+ 22 = n(17)*n(27)'n(37)°n(67)°n(97)*n(187) "

Example 4.8.6. I'y(33). There are four cusps 1,; L. The functions

n(37)n(337)
n(r)n(iir)
_ g3r)n(117)°
~ n(r)on(33r)S

can be verified to have, for x, simple poles at and 11, and fory, quintuple poles at % and 3—13 The orders
of the functions x and y with respect to F0(33) are thus 2 and 10. Since x +y has odd order and x has
order 2, x and y generate Ayg(T'o(33)) by Proposition 4.4.8. The relation of degree 2 in y and degree 10
m T 1S
(y—1)% (322 +x+1) (92 + 152 + 1427 + 5z + 1)
y @ '

Following [8], the n function can be generalized to any even real Dirichlet character y. Set
—irn(- - nyx(n
nﬂﬂ=q2“1wIﬂl—QV”,(M—Dzl)

Here L(s, x) is the Dirichlet series Y ns , which converges for s > 1 and can be analytically continued
to C with a possible pole at s = 1. When yx 1s the function 1 identically, we recover the usual n function
because of the value L(—1,1) = ((—1) = —=. It suffices to study primitive characters because if y is a
character modulo k and x(n) = x1(n)xo(n) Where X1 is the primitive character modulo Alk and yo(n) is
the principal character modulo k, then

H Ty (I7)" Oxa (D)

l|A

It should be pointed out at this point that the only real even primitive characters are given by

= (),

where () is the Kronecker symbol and A is a fundamental discriminant (see definition 7.3.1). The period
of this character is A.

Proposition 4.8.7 ([8]). Let A > 1 be a fundamental discriminant and x the associated primitive real
even character. Set x'(n) to be x(n) if A is a prime, and 1 otherwise. Then, for any (¢54) € To(A), ny
satisfies the transformation formula

5 ,A=5
ar +b / x(d) a—d+bc—8b
I\ g ) = X (@707 x4 g ,A=8.
1 ,A>8
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4.9 T'(N) and regular polyhedron

It is known that the finite groups acting faithfully on C., are exactly

Lo, the cyclic group of order n,

Zy X 7o the dihedral group of order 2n,

Ay the symmetries of the tetrahedron of order 12,
Sy the symmetries of the octahedron of order 24,
As the symmetries of the icosahedron of order 60.

For the modular group, it turns out that restricting to normal subgroups of genus 0 puts a restriction
on the first two types, and there is a finite list of possible groups. First, for any subgroup I' with
p=[T(1): T], let ey (resp. es3, es,) denote the number of equivalent classes under I' of the points T'(1)(4)
(resp. T(1)(e(3)), T'(1)(c0)). Equivalently, €2, e5 and ey are the number of cycles in the permutations
S and O and T' in the permutation representation of I'. Thus, e,, = €, + *== for m = 2,3, 0o since
oo = €00 Next, suppose that T is a normal subgroup of I'(1). This means that all of the cycles of S and
O and T have the same length, and therefore that e,,|u for m = 2,3, 00. Thus, in this case we can define
Ny by
MU= T2€Ey = N3E3 = N,

and this corresponds to the triplet (ng,ns, ne) describing the branching information of I'. The genus

formula may be rearranged as
2-2 1 1 1
g_1,1 1 (49.)
2 Ng N3 N
Note that ns is either 1 or 2 and ngs is either 1 or 3, while n.,, which is the width of any cusp, has no
such restriction. An easy consequence is that x4 = 0 mod 6 if g > 3. Also, if 'y < T'y < T'(1), then each

Ny (L) divides n, (Ts).

Proposition 4.9.1. For prime p with p > 5, PSLy(Z/pZ) is simple.

Proof. Suppose that there were a non-trivial normal subgroup G of PSLy(Z/pZ). By the second isomor-
phism theorem for groups, this would imply the existence of a group G’ such that I'(p) < G < TI'(1).
This is impossible because the branching information for I'(p), (2, 3, p), has the possible divisors (2, 3, p),
(2,1,p), (1,3,p), (1,1,p), (2,3,1), (2,1,1), (1,3,1), (1,1,1). Tt is easy to check that all but the first
and last two possibilities are ruled out by (4.9.1), and these two possibilities are ruled out because the
correspond to trivial choices of G. O

Proposition 4.9.2. If T is a proper normal subgroup of T'(1) with finite index and genus 0, then I is
one of the following:

I/ (
I? Lo (
3 ZS (
) S (
) Ay (
) (
) (

Sy
As
Proof. We first deal with the case ny = n3 = 1. In this case, (4.9.1) is % =1+ t and so gt =1 = n.
So in this case, I = I'(1). Next, suppose that ny = 1 and n3 = 3, so that % = % + i Since 1 > ng this

implies that 4 = 3 and that I' = I'® as this is the only normal subgroup of index 3. Next, suppose that
ny = 2 and ng = 1, so that % = % + t Since p > no this implies that ;= 2 and that I' = I'? as this
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is the only normal subgroup of index 2. Next, suppose that ny = 2 and ng = 3, so that % = —% + t
This implies that n. = 2,3,4,5 with corresponding 1 = 6,12,24,60. Set G = I'(1)/T so that u = |G|.
We will first determine G up to isomorphism and then I' exactly. Note that G is generated (modulo I')
by S, ST and T with S? = (ST)3 = T"= = 1.

First, suppose that |G| = 6, (2, 3,2). Since S has order 2 and ST has order 3 but their product T has
order 2 (not 6), G cannot be Abelian, and so G ~ S.

Next, suppose that |G| = 12, (2,3,3). A Sylow 3 subgroup cannot be normal, because otherwise its
quotient would correspond to a normal subgroup of I'(1) of index 4 which doesn’t exist. Since Ay is the
only group of order 12 that doesn’t have a normal Sylow 3 subgroup, G ~ Ajy.

Next, suppose that |G| = 24, (2,3,4). As before, there are 4 Sylow 3 subgroups, and we obtain a
homomorphism ¢ : G — S by the action of G on the 4 Sylow 3 subgroups where im ¢ ~ Ay, S, since
these are the only transitive subgroups of Sy whose order is divisible by 6. If im¢ = A4, then this
corresponds to another normal subgroup I'y of index 12. The only group with index 12 corresponds to
the triplet (2,3, 3), which does not divide the triplet (2,3,4). Hence im¢ = S, and so G ~ S,.

Finally, suppose that |G| = 60, (2,3,5). Since the only triplets dividing (2, 3,5) are the trivial ones,
G must be simple. Standard group theory arguments using the Sylow 2 subgroup show that As is the
only simple group of order 60.

To finish the proof, we need to show that I'(IV) is the only possibility for I' when the branching
information is (2,3, N) (and g = 0). By Proposition 4.3.1, the groups I'(2),I(3),I'(4),T'(5) have the
correct indexes in I'(1), that is

12N oo NIy (1-) S N2>3
u=6_—N=[(1)-F(N)]—{6 v >7N:2,

for N =2,3,4,5. Consider L NT(N) for N = 2,3,4,5. We know that I N T(N) is a normal subgroup of
T, but be do not know a priori that the genus of I N T(N) is 0. However, we are given that both I' and
F(N ) have cusp width N, and so I N T\(N) has cusp width N. This means that the branching data of
TNT(N)is (2,3, N) and 1f p and g denote the index and genus of I' N I'(N), we have
2—-2 1 1 1
-4+

[ 23N
Since the right hand side is strictly positive for N = 2,3,4,5, g is forced to be 0 and p is forced to be
12N/(6 — N). This means that [['(1) : TNT(N)] = [T(1) : F( )], which forces T = T'(N). O

Although we deduced that there is only one normal subgroup of genus 0 with branching data (2,3, N)
for N = 2,3,4,5, this result does not need to hold for higher genera. For example, all normal subgroups
of genus 1 have branching data (2, 3,6), and there are infinitely many of them ([16]).

Having classified all of the normal subgroup I' of I'(1) with genus 0, let us turn now to the problem of
constructing the spaces My, (T") for these I'. The groups I'> and I'® are not very interesting, as (Exercise

4.9.9)
Ap(T?) = C(\/j — 1728),  Ap(T?) = C(5'*).

so let us turn to I'(V) for N = 2,3,4,5. Assuming that there is a Hauptmodul, say fy(7), for these
['(N), it is possible to show that there is a Hauptmodul zy that is uniquely determined by

zy(T) = q_%(l + integral powers of q).

Since I'(V) is a normal subgroup of I'(1), there must be constants A, B, C, D, depending on N, such that

Il :AfN——i_B
N|T CivtD
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By rescaling the matrix M = ( 4 B), we may assume that one of its eigenvalues is 1. If the other eigenvalue

were 1, then (4 B) would be similar to either (§1) or (§¢). The first is a contradiction because MY =1

since TV € T(N). If the second were true then fn Would be invariant under 7' and so N divides
ordes (fn(7) — fa(00), T(N)) # 0, which is a contradiction because fy(7) — fn(00) is also a Hauptmodul
for '(N). We now have M = P~*(§%)P where ¢ is an N*® root of unity. Setting xy = P(fy) gives
zy|r = (yay for some integer 7 and so ¢ "/Nzy has an expansion in integral powers of ¢. Since zy is
also a Hauptmodul, » = +1 and we choose » = —1 which gives x a simple pole at co. It will be shown
that the following functions are such Hauptmoduln for I'y.
(@' a" )5 + (=a%—¢'?)s s 2 3 4
o(T) = 2q'/2(q2; q2)8, =q 2(1+ 20 — 62¢" + 216¢" — 641¢" +---),
13, q1/3Y8 | 341/3
_ 1)/3( q)(q ) = ¢ 5(1+5q — T¢* + 3¢ + 15¢* + - --),
) 6q )5 (4.9.2)
_ (¢% a*)5 _
¢4 D3 (a4 0%
2. 5 3. 5
25(r) = 1(/q5 g )500(q 4 )500 o
0"%(¢; 4°) o (0 4°) o

A more uniform (but multi-valued) definition of the modular function = is

N

(1420 — ¢ —2¢° + 3¢ +2¢° + -+ ),

m\»—t

Q+q-+¢+¢"—q =2 +-).

e N—6 5N—6
; 12N 12N | 1728
VARENS 2F1( N-1 ‘T)
_ N
IN N16 5N+6
N6 g 12N 12N 1728 (4.9.3)
J 21 N4l j
N

. 120 180(N—5)(3N2+21N+8) 2
=q N (1+ N(Nz_l)q+ N2(N+1)2(4N2=1) q +) )

where j is the j function. This representation will be proven in Chapter 8 where Proposition 4.9.4 below
can be utilized.
Proposition 4.9.3. For N = 2,3,4,5, vy is a Hauptmodul for T(N) and 2% is a Hauptmodul for T1(N).
The action of T on x is given by

LL’N|T = C&ll’N.
The action of S on xy is given in the following table.

N xN\S
8x+192

rx—1
3r+18
r—3
2x+4
r—2
(1+V5)z+2
2c—1—/5

Proof. We only deal with the case N = 5 as the other cases are similar and simpler. By Proposition
4.7.2, x5 has the representation
4
= (5 H

=O

Ot = W N

m\w
U‘\N.

m\»—A
m\s

hence we see immediately from Proposition 4.7.5 that x5 € MO(F(5)). Next, suppose that 2 is a cusp of
I'(5) and that g = (2 %) € I'(1). By Proposition 4.7.4,

4 2a+zc 4 (z—i—zc
Loy s Z (frac > (frac ))

1=

@M
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If (¢,5) = 1, it is easy to see that both of these sums are —2/5 (which is (1 — N?)/12N when N = 5),
so x5 has no zeros or poles at these cusps. The only cusps of I'(5) whose denominators are divisible by 5
are represented by %, %, where x5 has a simple pole and simple zero, respectively. We now know that x5
is a Hauptmodul for T'(5) since x5 clearly has no poles in H. It is clear from the g-series expansion of x;
that 5|7 = (5 'w5. From this we can deduce that 22 € Ay(I'1(5)) since I';(5) is generated by I'(5) and 7.
Since the cusps for T';(5) are a subset of the cusps for I'(5), the only possible location of a pole of z2 on
H/T'1(5) is at the cusp % (equivalent to oo), where z2 has a simple pole with respect to I';(5). Finally,
by Propositions 4.7.3 and 4.7.1, the g-series expansion of x5|g is

4 El
$5|S:C5_1HW
§7

=0

5
( 1/5 1/5) (C 1/5 1/5)OO
_C5 1- (CS q1/5 1/5) (C5 q1/57 1/5>oo
B 1+\/_+5+\/_ 1/5+5+3\/5 2/5
T2 2 1 o 1
From these first few terms it is a simple matter to determine the constants A, B, C' and D in the relation

l” _AJI5+B
SS_C$5+D’

+0(¢*).

which must exist because x5|s is a Hauptmodul for T'(5) since this is a normal subgroup of T'(1). O
Proposition 4.9.4. Let {f(z),z} denote the Schwarzian derivative

B f’”(z) _§ f”(z) 2
e =3 -3 (7)

Then,
(1= N72)j(j — 1728) — 1205 + 1327104

J2(j — 1728)?

{zn,j} =

Proof. Since the Schwarzian derivative is invariant under GLy(C) and I'(1) acts on zy by a subgroup
of GLy(C), as a function of 7, {zy,j} is in Ag(T'(1)). We assert that in fact j2(j — 1728)*{zn,j}
is a polynomial of degree 2 in j. First at any point 7 € H that is not I'(1) equivalent to either
i or e(z), j(7) has an expansion j(1) = by 4 bi(T — 79) + --- where by # 0. Therefore, since the
function xy does not ramify anywhere, it has an expansion in the neighborhood of 7y in the form
TN =ag+ a1 (j — j(10)) + aa(j — j(10))* + - - - where a; # 0. Therefore,

6 (ajaz — a3) N 24(a3 — 2ayazas + atay)

{‘Q:Naj}: CL% CL:I’ (]_3(70))+

remains finite at this location. In the neighborhood of i, j has an expansion j = 1728 + bo(T — )2 + - - -,
so o has an expansion xy = ag + a1(j — 1728)1/2 +as(j — 1728)2/2 + .-+ where a; # 0. Therefore,

3(&1&3 —

(j —1728)*{zn, j} = g a2) (j —1728) +

2a3
remains finite also at 7. In the neighborhood of e(%) xy has an expansion xy = ag+a15"% +agj?> + - -

where a; # 0. Therefore, we have the expansion

. L~ 4 2(aiaz3—a3) .
2 _ = 2) ;4/3 4 .
7H{zn, 7} 5 37 +
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which, when taken with the previous three expansions, shows that j2(j —1728)?{xy, 7} has possible poles
only at co. At oo we have the expansions j = ¢~ + 744 +--- and 2y = ¢~V (1 +byg+---), so oy has
the expansion xy = jY/V(1 4+ a5 ' +ayj 2+ --+) in terms of j. From this we obtain the expansion

{on.j} = (3 — 522) i+ (decending powers of j),

which shows that j2(j — 1728)*{zy, j} is a polynomial of degree 2 in j with leading coefficient 3 — 5.

If P(j) denotes this polynomial, then the expansions of (j — 1728)?{xy, j} and j*{zy,;j} show that

17282P(1728) = % and 172872P(0) = g, which uniquely determines the polynomial. ]

Proposition 4.9.5. For N = 2,3,4,5, j(7), j(NT1), 71}((71\/[]:))2244, 7;(7](\2?;4 have the following representations
as rational functions of xy.

. . N)24 24
N i(r) J(NT) e 2k
2+192)3 2-48)3
: oo = (z - 8)? 2* - 64
3 S - (x~3)° (+* —27)?
8 4 3 8 _1a.d 3
4 ety P e O (z—2)B1+201)3  (2t—16)
20 15 10 _ 5 3 20__ 15 10 5 3
e e
Proof. Let us first show that
, Alxy)? B(wy)?
j(r) = Alzw)” N)N _ 17984 D) N)N,
C(J?N) C(IN>
where A, B, and C' are polynomials of degrees 64_%, 66_]\][\], and gf% . Then using the fact that these rational

functions should contain only powers of x that are divisible by N, it is easy to compute the coefficients
of A, B and C by comparing the g-series expansions. At every cusp of H/I'(N) j(7) has a pole of order N.
Since z has a pole at the cusp oo, the degree of C should be 1/N —1, where y = [[" : T(N)] = 12N/(6—N).
At every point in I'(1)(7)/T'(IV), j(7) — 1728 has a double zero, hence B has degree p/2. Similarly, A
must have degree 11/3.

We know that j(N7) is a function of order p on I'(N) by Proposition 4.8.2. Therefore,

! 3 / 2

_ Aen)’ _ gpg 4 Blan)”
C'(xn) C'(zn)

where A’, B', and C” are polynomials of degrees /3, p/2, and p — N2. C’ has a different degree from
C because j(NT) has a pole of order N2 at oo. In this case the order of j(N7) is slight more difficult to
calculate at the cusps of I'(V) since the order of the pole of j(NT) at the cusp 2 of T'(N) is ged(c, N)?.
We will explain the factorization of C’ in the cases of N = 4,5. Two cusps of I'(5) are % and %, and
j(57) has a pole of order 25 at each of these. Since % is equivalent to oo, this cusp does not contribute
any factor to C’, but % contributes a factor 5. All of the other cusps of T'(5) have ged(c,5) = 1, so they

J(NT)

contribute simple factors to C’. The cusps of I'(4) are %, %, %, i, %, %, which contribute factors to C of
multiplicities 1,4,1,0,1, 1.

The identities for the n quotients are left as exercises. O]
Proposition 4.9.6. For N = 2,3,4,5, set yn(7) = an(%)".

1. yn(7) is a rational function of xn(T) of degree N. Ezplicitly,

N yy in terms of Ty

(z+24)2
2 r+8
3 (z+6)3
224+3x+9
4 (z+2)*
5

zgx2+4)
x(x?+3x° +422+2x+1)
x4 —2x3+4x2 —3x+1
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2. xn(T) is expressible in terms of yn(7) and radicals. Specifically, there are constants A, B,

depending on N, such that
AQSN—I-B N_A’yN+B’
CZEN+D _C/yN—I—D/'

Proof. (1). Since zx (7)Y € M{(I'y(N)) and

o) a)Gr) (o

SO C

) e I'(N),

L., C D,

if (¢%) € I(N), it follows that yy = 2y (%)Y € M)(I(N)). We claim that yy has poles only at the cusps
Ll ... L of H/T(N) at that these are all simple poles. From this claim it follows that yy = Ry(zx)

1720 "N

where Ry is some rational function of degree N. In order to prove this claim, recall that xx has a pole
only at the cusp % (similar to %) of H/T'(N). Therefore, yx has a pole at ¢ if and only if 75 is equivalent

to %. Writing - in lowest terms (assuming ged(a,c) = 1), we need

a Nc
= (£1.0 d N.
(gcd<a, N)’gcd(a,m) (£1,0) mo

This implies that ged(a, N) divides ¢, which means that ged(a, N) = 1, and so a = £1 mod N. Next,

to find the order of yy at the cusp %, notice that

N
T B i T
Yn (k7+1) N (Nkr+1)
T N
_ N
N (Nk%Jrl)

o ()

b

which shows that yy has a simple pole at % as claimed.
(2). Let the constants A, B, C, D be determined by the action of S on zy, i.e.

| AZEN+B
X = —_0—0=.
N1S CJ]N+D

First, we have

(v ) () (53 () enen

if (%) €T'1(N). This means that xx(5=)" is invariant under I';(N) so zx(52)" = Fy(zn(7)Y) where

NT
Fy is a rational function. We have already shown that

Nt

ZN (%)N = Ru(an(1)),

where Ry is a rational function of degree N. Replacing 7 with # in this equation gives

o ()" =Ry (an ().

T

Avy + B\ _ (A" + B
Con+D)  ""\eyVi+D)
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Replacing 7 by % in oy (55)Y = Fy(zn(7)Y), we derive an equation of the form

(A:L‘N + B

N
N2} = F .
CZEN+D) N(yN)

Comparing these last two equation and keeping in mind that Ry is a rational function of degree N, we
see that Fly must be a rational function of degree 1 and the assertion of the proposition holds. ]

Proposition 4.9.7.

Mk<F(3)) _ @ CU(3T)3G77(T/3)%’
a+b=k n(T)k
Mi(T(4)) = @D Cn(4r)*>n(2r)™ n(r)~>,
M(I'(5)) = GB Cn(L)l:k{?; o (57)%2 o (57)".
a+b=>5k n(r)3k 5 5’5

a,b>0

Proof. For N = 3,4,5, these bases for My (I'(N)) follow from the observation that there is a fy(7) €
M' [ (T(N)) with a pole only at co. Specifically,

(1)
folr) = n(37)3’
_ n(27)?
B = anr
_ n(t)?
fB(T) - 77(57)15{3%%(57)57

with poles only at co of orders 1, 2 and 5, respectively. It follows that if f € My(T'(N)), then f&f €
M}(T(N)) and has a pole at oo of order at most k, 2k, 5k, respectively, and thus is a polynomial in zy
of at most this degree.

Let us prove the claim about f;. We first observe that % € My(T'(5)) by Proposition 4.8.3 and

t10(57) € ML, (I'(5)) by Proposition 4.7.5. Since, by Propositions 4.7.4 and 4.8.1,
4 a+tic
1 orde n(r)? T | = 3 ged(1,e)®  15ged(5,¢)® 52 frac (“£)
3O \ ) Es o (57)° 24 1 24 5 2 2
-1 ,%¢=1modT(5)
=40 ,2=2modI(5),
2 , otherwise
the claim for f5 is verified. O

Exercise 4.9.8. Obtain and explain the formulas for the n quotients in Proposition 4.9.5.

Exercise 4.9.9. Show the following. Sections 4.4 and 4.5 will be helpful, and one should recall the
definitions of I'? and I'® in Section 2.11.

1. T2 (resp. T) is the only normal subgroup of T'(1) of index 2 (resp. 3).
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2. T is freely generated by (7134 and (9 21), each of order 3.

3. T s freely generated by (9 1), (5 21) and (1 Z3), each of order 2.

4. The commutator subgroup T'(1)" of T'(1) is I ﬂfg, has genus 1, and is freely generated by (1) and
(T1).
49(T%) = C(yT=T728).
6. Ao(I%) = C(5'7%).
A4g(T? NT3) = C(j1/3, /7= T728)

4.10 Representations by z° + y°
Proposition 4.10.1. For any integer k > 1

1. ©5(27)% € M (T1(4)).

2. dim My(T'1(4)) = |52,

3. dim Sy (I'y (4)) = max(|*3?],0).

Proof. (1). Exercise 2.12.5 gives

O, (a”b) = (5)e <%) Ver +d 0y(7)

ct +d d

for any (¢9%) € 'y with d odd. Since

2 0\ (a b\[(2 0\ "
01 c d 01 N
if (¢%) eTl'i(4), it follows that O3(27)* € M;(I'1(4)).
(2). Proposition 4.9.7 gives

2b
),

vie

My(T(4) = €D Cn(ar)®*2(2r)> *n(r)~

a+b=2k

a,b>0
Since M(I'1(4)) is the subspace of M (I'(4)) consisting of forms with expansions in integral powers of ¢
and

n(47) 2 n(27) (1) 7 = ¢ (¢% ¢ 27 (@7 6°)38 (43 )2,

we must have

MT(0) = @D Codn) > (2r) Pn(r) >,

a+b=2k
a,b>0
b=0 mod 4

which implies that dim M;(T'1(4)) = [E£2].
(3). M5(I'1(4)) is spanned by the three functions f; in the following table, where the orders are given
at the cusps. Note that the cusps of I';(4) are represented by 1 5 1, and 1 , with widths 1, 4, and 1.
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fi n§§T)5° - 71(1227)26 ; 17(27)2?7(37)12
n(7)*n(4r) n(r)2n(4r) n(7)
ords (£, T4(4)) | 0 1 2
orda (fuT1(4) | 0 0 0
ords (i, T1(4)) 3 ; 3

If A +#0, then fo+ Afs has a zero of lowest possible order at the two cusps % and % Lets try to determine
A so that it also has a simple zero at the cusp %.

. 12 N2 -
_ A (5) "0 (3) 5)

S5 8192n(1)* 5127]( )
_ (A+16) + (64 — 124)¢"/* O(q2/4)
N 8i '

D) ()
) Zgnt T gy

in (

With A = —16, we see that there is a form f, — 16f3 € S5(I'1(4)) with simple zeros at the regular cusps
and a zero of order % at the irregular cusp. Also, fo — 16 f3 has no zeros on H by the valence formula. It

follows that Sk(F1(4)) = (fg - 16f3)Mk_5(F1(4)) ]

Proposition 4.10.2.

4 = no1 "
@3(27)2 = 2121%’% =1+ 42_:(_1> 2 1— qn;
Em
402 o2 12 < q"
@3(27') —39%7% 292% 12%% —1+821_qn7
i
3 n [ee} n
03(27) ——21221—4232311 —1+16Z;1 por Z;( 1) o
j= n n=
2tn

0 3. n _
8 15,4 1.4 1.4 nq" 12 ,n=2mod4
Os(2r)’ = ey —leby — by =140 T s {16 , otherwise

4.11 Building congruence modular forms from © functions

Riemann’s © function with characteristic [3] € R**9 is defined as

O3]z = ) e (3(n+a)Q(n+a)+ (= + B).(n +a)),

nez9

where z € C9 and Q € C9%9 is symmetric with positive definite imaginary part so that the sum is
absolutely convergent. The © function without characteristics is defined as ©(z|Q2) = © [J] (2|Q2). Since

O[5](2|Q) = e(a.(z + ) + 2a.0.0)0O(z + 0.0 + 5|QQ),

the function with characteristics is no more general but is slightly more convenient to work with. We
will mainly make use of this function in the case z = 0 and €2 = 7¢Q) where 7 is the usual variable in H
and @ is a symmetric positive definite matrix in Q9*9. In this case set O [3]| (1) = ©[3] (7Q). When
the variable z is set to zero, it is commonly omitted from the notation so that ©[3](22) = ©[3](0/©2).
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Note that Riemann’s © function doesn’t change much if the characteristics change in sign or by integer
vectors, i.e.

O[5] () =0[3](),
O [517] () =e(at)O[F](Q), s,teZ
Proposition 4.11.1. We have the following properties of © 3] (z|S2).

1. Quasi-periodicity: For any s,t € 779,

O [511] (1) = e(a.t)O [§] (2]92),

O[5](z+5.Q04tQ) =e(at — f.s — 35.0.5 — 5.2)0 [ 5] (2|Q).
2. Parity for half-integer characteristics: If o, B € %Zg, then
O[5](—21Q) = (-1)**?O[§] (=|9).

3. For any A,B,C,D € Z9*9 such that G = (& B) is a symplectic matriz, i.e.

(e o) (% o)(m )=o)

and ABT,CDT have even diagonal, there is an eighth root of unity e(G), depending only on G and
the choice of the square root such that

O[5] (=(CQ+ D) (A + B)(CQ + D)) = /det{CA + D)e (32.(C + D)7'C:2)
xe(~3a-ABT.a — a.BCT.f — 36.CD") [5135] (:19)

Proof. Properties (1) and (2) are straightforward. It suffices to show (3) for & = 8 = 0 since the ©
function with characteristics is no more general than the function without. (3) is proven [17, page 168|
by showing that the group of symplectic matrices is generated by the three types

0 AT
I B . :

( 0T > , B € 79%9 O(z + B|Q2) = ©(2|Q2) if B has even diagonal
0 -1

(I 0 ) O(z.Q71 Q™) = y/det(—i)e(52.071.2)O(2]Q)

The transformations for the first two types are straightforward, and the third transformation follows from
the g-dimensional Poisson summation formula.

[]

We first give the behavior of ©¢ [3] (7) under the generators of I'(1). Proposition 4.11.2 implies that
the functions

{0 [5](r) |a,f e 2 mod 1, B.Q7" € 77}
are transformed linear among themselves (in weight g/2) by I'(1), as well as the same for the functions

{6 [5](r) |a€ +Z mod 1, a.Q € Z7} .

Thus we obtain a homomorphism from I'(1) to GL,(C) for some k. Proposition 4.11.3 shows that the
kernel of this homomorphism is a congruence subgroup, and we will work out explicit examples in the
case when @ corresponds to the quadratic form 22 + zy + y? and other interesting forms as well.
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Proposition 4.11.2. Suppose that Q) € Z9*9 has even diagonal and that N is a positive integer with
NQ™ ' € Z99. Then

O[3l (T+1) =e(—30.Q.0) Oq [ s1aq] (7),
e MBICHETCH IS DINCH L [C)

reZ9/NZ9I
Q.r=0 mod N

Proof. The transformation under 7' is straightforward. The transformation under S follows from the
g-dimensional Poisson summation formula. ]

Proposition 4. 11 3. Suppose that Q € Q9%9 is symmetric and positive definite. If g = (25) € I'(1) is
such that bQ,cQ~' are integral and ab@, cdQ~" have even diagonals. Then,

Onmqur [3](T) = [ﬁM (), MGGLg(Z>7
@Q 9] (1) B)Vdet(—irQ)0q [ 4] (v
005 ( b) (_% baQa—bcaﬂ—-Cd5Q15>

x eole,d)(er + d)?/?0, [aggﬁdﬂ (),

@

—

0

Here the quantity eg(c,d), depending only on ¢ and d, is the eighth root of unity

Z CQ cn.Q 1

n€z9 /dz.9

)92 Z .
Y det nEZg/CZq

where it is assumed that cd@ is integral with even diagonal in this last sum (so that it is well-defined).

c9/2
)9/2

EQ(C, d

/\/‘\

Proof. The three transformations are a straightforward application of Proposition 4.11.1. The equality
for eg(c,d) follows by letting 7 — —¢ in the third transformation an comparing the first terms of the
asmypotics, similarly to Proposition 2.9.1. O

Proposition 4.11.4. Let all of the hypothesis of Proposition 4.11.3 hold as well as the assumption that
cd@Q is integral with even diagonal. For an automorphism o € Aut(Q((,)), let x° denote o(x) and x°~*
denote o(x)/x.

1. If Q is integral and has even diagonal, then

o—1
eole,d) = (x/det z'cQ) , where o : (o 2.
2. If Q is integral and d is odd, then
o—1
egle,d) = (Vdet icQ) , where o : Coe > (3.

3. If Q € Z**% has even diagonal, then

d det Q odd
- det Q ’
€Q<C7 d) - { gg det Q>) d—1 det Q even .
d 8 ’
Proof. (1). )
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4.12 Representations by 2%+ 2y +y* and other quadratic forms

The quadratic form 22 +zy + y? arises from the case Q = (?1). Let us save space notationally by writing
O[3](r)=06 [O‘/?’] ((37 1)) for the time being. Propositions 4.11.3 and 4.11.4 give

83
O [5olls(m = (5)©[50] (),
O [50] ls(7) = & (5) © [530] (7); (4.12.1)
O [12] () = ¢ (5) e [12] (7),

for any g = (_4.5) € Ts(3). These © functions, i.e.

_ E 2 +ry+y?
- q )

z,y€Z?
1,1 . 224 2y+y?
@[0,0}(7)— E q v,
TYEL+72
00 22 xyty? rr— y
1 2 E gt v* (3
z,y€Z?

are the three functions introduced in [4].
Proposition 4.12.1. For any integer k > 1
1. © o] (7)F € Mi(T'1(3)).
2. dim Mi(Iy(3)) = [££2).
9. dim S,(T(3)) = max(| 552 . 0).

Proof. The proof of these results is similar to Proposition 4.10.1. The form in Sg(I'1(3)) with a simple
pole at ¢ (width 1) and a simple pole at 9 (width 3) is n(7)%n(37)°, by Proposition 4.8.3. O

Proposition 4.12.2.
O [00] (1* =0 [a5] ()* +O[12] (7)°

Proof. By (4.12.1), the three functions © [(0] (7), © [¢0] (7)%, © [19] (7)? are all in M3(T'1(3)). Since
this space has dimension 2 by Proposition 4.12.1, there must be a nontrivial linear relation between these
functions. This is easily found using the first three terms of the ¢-series expansions. m

Proposition 4.12.3. Let x be the odd character modulo 6. Then,

% —1—1—621_(]

This concludes the study of the quadratic form @ = (23). We will now focus unimodular lattices,
and in particular on the Ejy lattice. The FEg lattice is deﬁned as

O [00] (1) =2v=3¢

DD\O

Eg:{(a:la-"axZ)GZSU(Z‘i‘%)S‘$1+"‘+IE8E2Z}.
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A basis for the Fy lattice can be given as the columns of the matrix

0o 0 0 0 0 1 -1 —1/2
0 0 0 0 1 -1 -1 1/2
0o 0 0 1 -1 0 0 1/2
a0 0o 1 1o 0 0 12
"o 1 -1 0 0 0o o 12
1 -1 0 0 0 0 0 1/2
-1 0 0 0 0 0 0 1/2
0 0 0 0 0 0 0 -1/2
Note that det A = —1. The associated quadratic form is
2 -1 0 0 0 0 0 0
-1 2 -1 0 0 0 0 0
o -1 2 -1 0 0 0 0
0 o -1 2 -1 0 0 0
@s=ATA=1 0 o o -1 2 -1 -1 0
0 0 0 0o -1 2 0 -1
0 0 0 0O -1 0 2 0
0 0 0 0 0 -1 0 2

Proposition 4.12.4. Let QQ € Z9%9 be a symmetric positive definite matriz with even diagonal and
det@ = 1.

1. g =0mod 8
2. ©g(7) € Mya(T(1)).

Proof. (1). By Proposition 4.11.3 with a = 8 = 0 and M = Q~!, we have @Qq(—%) = Og(—12) =
(i7)9/20¢(7) and Og(7 + 1) = Og(7). Therefore,

Oq(T) = (i/7)7?0q(1 - 1).

Iterating this three times gives Oq(7) = (i/7)92(it /(T — 1))92(i(1 — 7))9/20¢ (7). Since Og(7) clearly
does not vanish identically, this implies that

(;)g/z (TZ_T 1>g/2 (i(1— )92 = 1.

Setting 7 = e(%) and simplifying, we find that the left hand side is ¢J. Thus, g = 0 mod 8.

(2). This is now clear since Og(7) = >, s q2™9™ has a ¢-series exansion in non-negative powers of
q. ]

We can derive from this proposition the fact that ©¢, [§] (1) € My(T'(1)), and so

Ey(T) = Oqu(7)
— E qx%+x§+m§+xi+mg+w%+x$+m§fxlx27x2x37131471415fx5x67x5x7716z8

xeZ8
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4.13 Subgroups up to index 7: non-congruence examples

Recall that if a subgroup I' of I'(1) contains some I'(N) then it is called a congruence subgroup. In this
section we are concerned with the elements of I'(1) only up to their action on H, so we suppress the bars
over all of the subgroups of I'(1). For any subgroup I' and cusp a € Q, let hpr(a) denote the width of the
cusp « for I'. Also, let I'°, called the congruence closure of I', be the smallest congruence subgroup of I'(1)
that contains I'. Clearly, I' is a congruence subgroup if and only if I' = I'. The following proposition
relates I', I'® and level(T).

Proposition 4.13.1. Suppose [['(1) : T'] < co. Set N = level(T") and let ¢ : T'(1) — PSLo(Z/NZ) be
the map that reduces matrices modulo N. Let ¢~ take subgroups of PSLo(Z/NZ) to the corresponding
groups between T'(1) and T(N). Then, I'* = ¢~ (p(T)).

Remark 4.13.2. There are much faster ways for testing if I' is a congruence subgroup and computing
the congruence closure using presentations for PSLy(Z/NZ). See [20]. The main result for odd N is: T

is congruence if and only if (R*T = )® acts triwvially on the cosets T(1)\I'. Recall that R = (19) and
T=(51)

Proposition 4.13.3. Suppose I' is a congruence subgroup of level N. Then, if I' > T'(1) then N | .
Proof. Exercise. m

The following Proposition, due to Wohlfart, says that the level of a congruence subgroup I' is the
smallest [ satisfying I" > T'(1).

Proposition 4.13.4. Suppose I' is a congruence subgroup of level N. Then, I' > T'(N) and
N = lcm(hp(()), hr(l), hF(OO))

Proof. Set m = lem(h(0), h(1),h(c0)). Since the hypothesis is that I" is a congruence subgroup, let [ be
such that I' > I'({). Since I' > I'(!) and the width of every cusp for I'(]) is I, { must be a multiple of
each of these three widths h(0), h(1), h(c0), and so m | I. Let M = (¢%) = I mod m be any matrix in
['(m). We must show that M € I'. By multiplying by powers of ({7) and (}, ¢), which are in both T’
and ['(m), we may make some simplifying assumptions on M.

e gcd(d,l) = 1. Note that (24)(§7)™ = (255%™ ). Since ged(d,mc) = 1 by the assumption
M € T'(m), there is an integer n; so that ged(d + cmny,l) = 1 (for example, since d + emZ contains

infinitely many primes).

e b=0modl. Note that (§m)2(2¢}) = (*Femne brdmna) Since m | b and ged(d, 1) = 1, there is a n,
such that b + dmny, = 0 mod [.

e ¢ =0mod [ Note that (¢4)(,} )" = (4757 %), Since m | ¢ and ged(d, l) = 1, there is a ng such
that ¢ + dmns = 0 mod [.

Therefore, we may assume M = (¢ 9) mod [ where ad = 1 mod [. However, modulo [, M is congruent to

M', where M’ = (,°%, d(‘;d:ald) ). Therefore, there is a matrix L € I'(l) < I with M = LM’. M’ can be
written as the product of three matrices with trace 2 as

; 1 0 a 1—a 1 1—-d
v=(0 )Gt (0 )

The last matrix in this product fixes oo, and h(o0)|1 — d because d = 1 mod m. This implies that the
last matrix is in I'. Dido for the second matrix (= (19)(§'7%)(19)™") and the cusp 1. Dido for the first
matrix and the cusp 0.
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Finally, let N denote the level of T, that is, lem({hr(@)},cg). We have just seen that I' > T'(m).
However, we have m|N by the definition of m, and N|m by Proposition 4.13.3. Therefore, N = m.
[

The number of subgroups of I' and size of the conjugacy classes as computed in [18] are as follows.

index ‘ 1 6 7

2 3 45
No. of subgroups |1 1 4 8 5 22 42
No. of conjugacy classes |1 1 2 2 1 8 6

All of the subgroups T of T'(1) with index < 7 except [ NT"® have genus 0. It turns out that if we assume
the existence of a Hauptmodul, xr, for each of these genus 0 subgroups I', we can find zr as an explicit
algebraic function of j. Let us illustrate with, for example, the conjugacy class of subgroups of index 7
in Table 4.1 with (€, €2,€3) = (2,1,1) and cusp widths 5 + 2. We first fix x by putting its pole at the
cusp with width 5 (and setting its residue to be 1) and its zero at the cusp with width 0. Since there is
one elliptic point of each order for this subgroup, we have an equation of the form

(z + ap) (2 Jg a1 +05)° oo GRS by)(2® + 5221’2 + byt + ba)°
x x

j =

It is possible to determine the constants a; and b; algebraically by equating coefficients on powers of x.
It turns out that there are five distinct sets of solutions, corresponding to the five conjugate subgroups
that have a cusp width of 5 at co. In the table, z has been rescaled so that the defining relation with j
is rational.

Note that the groups of index 7 in the last four entries in Table 4.1 are not congruence subgroups
because the least common multiples of the cusp widths are 6, 10 and 12, respectively, and none of the
indexes [['(1) : T(6)] = 72, [['(1) : T'(10)] = 360, and [['(1) : T'(12)] = 576 is divisible by 7. Let I'°* denote
the subgroup with cusp widths 5 4+ 2 and fundamental domain

1
1

Note that once the locations of the two elliptic points are specified, there is only one way to pair the edges
while obeying the cusp widths of 5 and 2, so this defines a subgroup of I'(1). Since Table 4.1 gives the
Hauptmodul x as a explicit algebraic function of j, it is a simple matter to obtain the ¢-series expansion
of z from that of j. For the group I'*2, we have

278 2540 116185 2924644
_ o 2/5, /5 200 45 2/5 3/5 a/5 |
I(T)—? 7 q 28+72/5q 7‘74/5q +343_71/5q +240173/5q + ’
512000 1/2 69632000 488364032000 3/2 340869677056000 ,

343/ —7 117649 1 203536071 T 06889010407

The function z(7) is a Hauptmodul for I'°2. The Hauptmoduln for the other six groups in this conjugacy
class are (1 — 1/(7 + 1)), and (7 + j) for : = 0,1 and j = 1,2, 3, 4.

x(1—1/7) =
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1% (eooa €2, 63) Ccusps Hauptmoduln Conj'
2 (1,02) 2 j=a® +1728 ;
3 (17 37 O) 3 j — x3 )
3 (21,00 241 5= o0 .
5 (1LL2) 5 j = 2*(2®> = 5z + 40) 5
6 (1’0’0) 6 genus 1 ]
6 (1,0,3) 6 j = —2723(a? + 16) ;
. 23(x+12)3

x°(T+
6 (22,00 5+1 = M i

x? 3
6 (3,0,0) 24242 j= ((;2;16942))2 \
6 (3,0,0) 4+141 5= (9;214684) ;
7 (1737 1) 7 j = :L’(a: + 7+7FSU + —35+7F> 7
7 (2,1,1) 6+ 1 _ 384(747 1763\/7)(%’_9)( ( Bt LR .

N 823543z
7 (2,1,1) 6+ 1 _ 384(TATH1763v/=8) (249) (2 +(6—v=B)a+1 (3—v=3))* .
7 (2,1,1) d+2 j = (2+125) (2452 —-1280)* 823543 .
L 82354372

2+432)(z%+802—3888

7 (2,1,1) 443 j =Gt )—(823;43953 3 .

Table 4.1: The subgroups with [['(1) : T] < 7 and their Hauptmoduln

As T2 is non-congruence and has prime index in I'(1), its congruence closure must be the full modular
group ['(1). Since z is clearly not invariant under I'(1), we have the g-series expansion of a modular
function that is not invariant under I'(N) for any N (so in particular, it cannot be written in terms of
the usual g-products). There are a few things to notice about the g-series coefficients of the function z:

e The coefficients appear to have unbounded denominators. (The g¢-series expansions of the Haupt-
moduln for the congruence subgroups in Table 4.1 all have bounded denominators.)

e Any Galois extension of Q containing the g-series coefficients of x and its six conjugate is not an
Abelian extension.

Exercise 4.13.5. Set a = 71+T*ﬁ Recall from Table 4.1 that supposedly there are 14 congruence
subgroups of index 7T with (€, €2, €3) = (1,3, 1), whose Hauptmoduln = satisfy

j=x(x* —azx — 21 —7a)® or & in place of a.

Since these are congruence subgroups, we should be able to solve for x in terms of q-products. Let us first
fix two of these groups, I'" and I'7, by the fundamental domains

AAAAANA AAANANA]
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respectively. The edge pairings for each of these fundamental domains are uniquely determined by the
locations of the elliptic points (shown with dots).

1.

Show that T7 and T7 are congruence subgroups of level 7 by means of Proposition 4.13.1 via the
following steps.

(a) Show that T is freely generated by S, T*ST—*,T°ST~°, T*ST~*
Show that I'7 is freely generated by S, T*ST =2, T3ST=3,T6ST5.

(b) Let G and G be the subgroups of PSLy(Z/TZ) ~ [(1)/T(7) generated respectively by the two sets
of generators in (a) modulo 7. Show that G and G have order 24 hence index 7 in PSLy(Z/TZ).

For j =1,2,3, let uj(1) = £&;/70(77)n(77)*/n(7), with the signs fized by
u(t) = =" (g;4") (¢’ ¢

uz(7) = +¢""* (% 4" oo (@1 "
us(7) = +4 " (6% 4o (0" 0700 (075 ¢ o/ (4 @) o

Show that uyn(7)*, usn(7)*, usn(7)* € So(I'(7)). This is in fact a basis by Theorem 4.2.5.

Show that
uy* GG 00 uyry’
un* le=1 0 ¢ O ugn® |,
uzn? 0 0 ¢ uzn?
uin' L (GG G-G G-G uin'
un® | |s = N G-G G- ¢-G Uz’
uzn’* G—G G-¢G @-¢ usn’*
Let z; = (3'u? + (' + 'l + a(Cuyus + (Fugus + (Fugug). Show that xy is a Hauptmodul for

L"'NT3, which is a subgroup of index 21 with (€x, €2, €3) = (1,9,1). Hint: show that xon® € Sy(T7).
Recall also that n® € S,(I'®).

Show that x3 is a Hauptmodul for T and that the x3 are Hauptmoduln for the conjugates of T7.
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Chapter 5

Hecke Operators

5.1 Motivating Examples

Example 5.1.1. Set

o0

0(7) = qlg; 9% (a5 0" =D ang",
O(r) = g,
_ o)
z(r) = W’
L og (T
y(r) = qdq@(f)z( :

The functions x and y generate Ag(I'o(11)) and satisfy the relation [5],
y? =1 — 202 + 5622 — 44a3.
Proposition 5.1.2. With a,, defined as in Example 5.1.1,

1. If ged(m,n) =1,

Amn = AmQp .

2. Recursion on prime powers:

0 ,p=11
Apn+1 = ApnQ,y, —
r e pagn-1 , p#11

3. Relation to number of F,-points on the elliptic curve y* = 1 — 20x + 562% — 4423:

p—1 2 3
1 — 20z + 562~ — 44x
ap:—E ( . ),p#ll.
x=0
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Example 5.1.3. Set

d n(177)3
2 =4 lOg )
dg = n(r)?
2
l—x 1 Tim miny in241Tm?2
2w An(T)2n(177)? <; (™ —e™)ga" T ) ’
2 d1
= —q— logx
rz = Zanq".
n=1

The functions = and y generate Ag(I'o(17)) and satisfy the relation
y> =1— 162 — 6622 — 4823 — 12727,
Proposition 5.1.4. With a,, defined as in Example 5.1.3,
1. If ged(m,n) =1,

Amn = AmQp .

2. Recursion on prime powers:

0 ,p=17
Apn+1 = Apn U,y —
P P payn-1, pF# 1T

3. Relation to number of F,-points on the elliptic curve:

p—1 2 3 4

_ 1 — _ _ _

) < 127) Z ( 162 — 662 48x 127x > 7 2.17.
1 =0 1

Example 5.1.5. Set
x:¢p@ifﬁo y:q@&ﬁfiﬁ
(¢ 9)%, (0% ¢% )%
The function field of
0 b c=0 mod5b
F:{(C )EF(l) d=1 modb }
b+c=0 mod 2

1s generated by x and y and there is the relation

1 1
T 1y
x? oy Y
The coefficients of
0"(4:0)2%(0% ¢°)2 = Y ang"”?
n=1

have nice multiplicative properties and satsify

p—1 -1
—11 —
y=1

p
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Example 5.1.6. Set
x=j(r)"3 y=+/j(r)—1728.

The function field of T(1) = T2 N T3 is generated by x and y and there is the obvious relation
y? = 2® — 1728.
The coefficients of

¢*(g:9)% =Y ang™*
n=1
have nice multiplicative properties and satsify
p—1 3
x° — 1728
e S (E) g
=0 p
Since the elliptic curve has complex multiplication, there is the simpler formula
0 , p=2mod 3
a, = .
b —2a ,p=1mod3, p=a?+3b?, a=1mod3

Can this formula for a, be obtained from

(Q7Q)oo _ Z(_l)nqn(?m—l)/Q

n

(0,9)% =Y _(m+ §)(=1)mgmimtD/2

m

5.2 Definition of the Hecke operators

Recall the slash operator |(a by k in weight £k,
cd”

~ (ad—be)*t  (aT+D
(ZZ)’k(T)_ (et + d)¥ / cr+d)

d

be the set of matrices of determinant n. We let Aj\A,, denote the equivalence classes of A, under the
action of the modular group (by multiplication on the left. It is not hard to see that

A”:{(Z b)EZ2X2|ad—bc:n}

Al\An:{(g ?) lad=n, 0<B<6}.

It is also useful to consider the set of primitive matrices of determinant n.
A;:{<Z 2)622xz\ad—bc:n, ged(a, b, c,d) = 1}.
] a
Al\An:{(O 5) ’Oé(s:n, O§5<57 ng(aaﬁ75):1}
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Proposition 5.2.1. Set g = (279).
1. To(n) =T(1)Ng 'T'(1)g.
2. Let I'(1) = U;'g(n)v; be a coset decomposition. Then

Ay =T(1)gl'(1) = Ll (1)g.

3. T'(1) acts transitively (by right multiplication) on the cosets A\ A¥.

4. The action of T'(1) (by right multiplication) on the cosets A1\A,, is transivie within matrices of the
same content.

If f e Ax(I'(1)), the Hecke operator T,, is defined as

T.(f)= D flox

geDl\Dn

Proposition 5.2.2. If f =) a,q™ € Ay(I'(1)), then

Tn(f) = Z qm Z dkilamn/dQ;

d| ged(m,n)

and for prime p,

Tp(f) - Z(amp + pk_lam/P)qm-

Proof. 0
Proposition 5.2.3. If f € A,(I'(1)), then

1. T(Ta(f) = Toun(f) for ged(m,n) = 1.

2. T,(Tyr () = Ty () + 9 T r ().

8. TolT(£)) = Yoty & Tonnsa (£).
Proof. 0

5.3 Eigenforms

5.4 Newforms
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Chapter 6

Modular Forms mod p

6.1 The structure of modular forms on Sl;(Z) mod p

6.2 The congruences for p(n) mod 5,7,11 are the Unique Ra-
manujan Congruences

6.3 24n =1 mod 57°11° implies p(n) =0 mod 5e7lzl+111¢
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Chapter 7

Modular Equations and Singular Values

7.1 Modular equations for j

Proposition 7.1.1 (Classical modular equation). For any integer n > 2 there is a polynomial ®,,(X,Y)
of degree ¢(n) = n[],,(L+1/p) in X and Y such that:

1. ®,(X,Y) is irreducible.

2. ¢,(X,Y) is symmetric in X and Y.

3. ©,(X, X) has leading coefficient £1 if n is not a square.
4. The zeros of ®,(X,j(7)) occur exactly at the points

ad =n
ij(‘”;‘g), 0<B<s
ged(a, 8,6) =1

Proof. ... O

Proposition 7.1.2 (Canonical modular equation). For any integer n > 2 there is an irreducible polyno-
mial ¥, (X,Y) of degree ¢(n) in X and Y such that ®,(f.(7),j(1)) =0, where

fulT) = (7777(21:)))@42% |
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7.2 Modular equations for the Weber functions

Weber’s functions are defined as

25(r) = V5] 7728 = 20T

n(r)*

A = (i3 = Baln)
_ (%)
f(T) - C48 77<7_)
n(3)
W=
_ 5 (27)
) =V
Proposition 7.2.1.
713(1) € My(T(2)),
72(7) € My(L(3)),
F(r)*4 11(7)* f2(7) € Mp(D(2)),
F(T)? 51(7)% a(m)° € Mp(D(16)),
F(7), 11 (7). fa(7) € Mp(T'(48)).

7.3 Quadratic Forms

Let n < 0 be a squarefree integer and consider the field K = Q(y/n). The ring of integers in K can be
given as

_{Z+Zﬁ ,n#1 mod 4

K Z+Z_1;‘/ﬁ ,n=1 mod4’

Therefore, the discriminant of K is given as

4n ,n#%1 mod4

. (7.3.1)
n ,n=1 mod4

disc(K) = {

Definition 7.3.1.
1. A negative integer d is called a discriminant if d = 0,1 mod 4.

2. A negative integer A is called a fundamental discriminant if it can be obtained from some squarefree
n by formula (7.3.1). These are the numbers A such that

A =1mod 4 and A is squarefree
or A =8,12mod 16 and A/4 is squarefree.

3. Any discriminant d can be written uniquely as d = f*A where A is a fundamental discriminant
and f > 0 is an integer. This f is called the conductor of the discriminant d.
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Definition 7.3.2. Associate with a triple of integers (a,b,c) such that a > 0,b*> — dac < 0 the following
objects

1. the positive definite quadratic form ax® + bxy + cy?

2. the discriminant d = b* — 4ac

3 Tape= "Vl cH

4. fractional ideal )\(#EZ + aZ) of the order %Z +7Z, for any A € K

5. the following operation of Z*** on quadratics forms

M € 77 : az® + bry + cy® — aX® + bXY + Y with (§>=M<z)

6. conjugation operation (a,b,c) = (a,—b,c)
Definition 7.3.3. 1. A quadratic form (a,b,c) is called reduced if

0<|b] <a<candb>0 whenever a = |b| ora=c.

2. A quadratic form (a,b,c) is called primitive if ged(a,b,c) = 1.

3. A quadratic form (a,b,c) is called real if (a,—b,c) is I'(1)-equivalent to (a,b,c) and imaginary
otherwise. An equivalent characterization of real forms is those whose corresponding ideals square
to principal ideals.

Proposition 7.3.4. Every quadratic form is equivalent (under I'(1)) to a reduced form, and no two
distinct reduced forms are equivalent. The real forms are precisely those lying on the even, odd, and free
edges (Definition 4.5.2), that is, those where j(Ta.p.) € R.

Proof. The condition for (a,b, c) being reduced is exactly
1 1
| Re(7)| < 3 and |7| > 1 and Re(7) < 0 whenever |Re(7)| = 5 ot |7] = 1.

for T = %&. This is exactly the fundamental domain for I'(1). O

Definition 7.3.5. Let H(d) denote the equivalent classes of primitive forms of a given discriminant d
under the action of T'(1). Also let h(d) denote the size of H(d).

Proposition 7.3.6. h(d) < cc.

Proof. 1f (a,b,c) is a reduced form with discriminant d then we see b*> < ac < —d/3. There can only be
a finite number of forms satisfying this. O

Example 7.3.7.

h(—163) =1 H(—163) = {(1,1,41)}
h(—160) =4 H(—160) = {(1,0,40), (5,0,8), (4,4,11),(7,6,7)}
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7.4 Singular Values of the j Function

Proposition 7.4.1. For any discriminant d, the polynomial

- 1 (x-s(259)

(a,b,c)eH(d)

has integer coefficients. Furthermore, if d = r? — 4n for any integers r and n with n > 1, then Hfl(X)
divides ®,(X, X) (the modular equation for j).

7.5 Class Invariants

7.5.1 Y2 (T)
Proposition 7.5.1. For ged(3,n) = 1 The polynomial

0= I (o= ("57))

ad=n
a,6>0
ged(a,,6)=1
BS=0 mod 3
0<8<36

is in Z[x, o (7)]

Proof. The displayed set of functions is transitively permuted by I'3. Since ¥,(7) is a generator of Ag(I'®),
the coefficient of this polynomial must be polynomials in ~,(7). O]

Example 7.5.2. ®)*(x,y) = 23 — 2%y + 4952y + y* — 54000.
Proposition 7.5.3. Suppose (A, B,C) is a quadratic form with ged(3,A) = 1, B = 0 mod 3, and

ged(3,D) = 1. Then
Q(2(7a,8,0)) = Q(j(T4,5,0))-

Proof. Suppose that X = (74 ) is a root of ®72(X, X) = 0 for some n with ged(A,3n) =1 and n = 2
mod 3. We will show that, although X = ~(7) is a root of ®72(X, X) = 0, the quantities yo(7 £ 1) are
not roots of ®12(X, X) = 0. As the roots of X3 — j(7) = 0 are X = 5(7),72(7 & 1), the polynomials

(X, X)
X —j(aBc),

as elements of Q(7)[X], have a gcd of degree 1, and hence determine X = 9(74,5¢) as an element of

Q(j(7a,8.0))-
Now suppose that ged(3,A) = 1, B = 0 mod 3, and ged(3,D) = 1 as in the proposition. The

matrices that fix 74 p ¢ are of the form
r —Cy
Ay x+ By )’

for x,y € R. If X = 1(7a,5.c) is a root of ®72(X, X) = 0 then

at+b  ar+f
ct+d 5
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for some (2%) € I'* and some «, 3,4 as in Proposition 7.5.1. This means that
x —Cy - d —b a f
Ay =+ By )] \ —c¢ a 0 ¢
[ da dB—bs
-\ —ca ad—cfB )
Let n denote the determinant of these matrices. Thus,

n = ad = 2* + Bry + ACy>.

Note also that ged(z,y) = 1 since all of these matrices are primitive. Next, choose z and y so that
ged(A,3n) = 1 (this is always possible). As « is a divisor of n, x and Ay, we must have o = +1, say
a =1 and § = n. Note also that y 0 mod 3 since n =2 mod 3, and so ¢ # 0 mod 3. Also,

By=an—d—cp
=—(a+d) mod 3
=0 mod 3,

since 31 ¢ = 3| (a +d) in the group I'*. This means that it is necessary that
B =0 mod 3,

for 42(7a,p,c) to be a root of @, (x,x) = 0. In particular, the numbers v2(74 p.c £ 1) = Y2(7a,B524....) are
not roots of ®,,(x,z) = 0. O

Example 7.5.4. Let us continue with ®}*(z,y) = 23 — 2%y* + 495zy + y> — 54000. Here

PP (X, X) = X* - 2X3® — 495X + 54000
= (X —20)(X — 12)(X + 15)?

The degree n = 2 represented by the following principal forms:

2 =22+ (A,B,0)=(1,0,1) D= -4
2=a+30y+4y* (A BC)=(1,3,4) D=-7
2 = 2% + 2y (A,B,C)=(1,0,2) D= -8

One can compute that

ged(X* —2X3 — 495X ? + 54000, X® — 7) = (5% — 9905 + 26730000)X — (25 + 1910257).
X

Thus, the equation
, 25(7)? + 1910255 (1
Vo (T) :j(T>1/3 — 2]( ) ' (1)
§(7)% — 9905 (7) + 26730000
holds for the three values T = Ti101,Ti134,T102. Indeed, the following table is easily verified from this
formula.

D 7 ) ml)

-4 V=1 122 12
—3+V/-7
-7 =L 158 15

-8 V-2 203 20

Example 7.5.5. As 4 = 1 mod 3, the polynomial ®)?(X,X) = (X3 — 287496) (X? + 3375)° has all
three roots in common with X> = j and cannot be used to determine j'/° as an element of Q(5).
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7.6 Singular Values of the Weber Functions

The polynomial H?(X) defined in Section 7.4 has quite large coefficients. Tt turns out that modular func-
tions of higher level (e.g. j'/%) provide the same extensions of Q with much smaller defining polynomials.

Weber defined a class invariant f(7) to be a modular function for which

Q(f (Tap,e)) = Q(J(Ta,B,0))

where (a, b, c) ranges over some set of representatives of H(d).

Definition 7.6.1. For any integer N let (a/,,c

for which

ged(a’

Proposition 7.6.2. For any primitive form (a,b,c), [(a,b,c)|n exists.

Proposition 7.6.3. With s = gcd(3,d) and (a,b,c) €

Proposition 7.6.4. With s = ged(2,d) and (a,b,c) €

Proposition 7.6.5. Let (a,b,c) range over [H(d)|ss. Set T = % and s = ged(3,d).
the following table of class invariants. The d =5 mod 8 case is pure conjecture.

condition class invariant
—d/4 =0mod 8 2735, ()8
—d/4 =4mod 8 (2) 273/, ()%
—d/4 =2 mod 4 (2) 2752, (1)
—d/4=1mod 8 (—) —s/2f(7)%
—d/4 =5mod 8 Sf( )4
—d/4 = 3 mod 8 2~ Ls/3lg(7)s
—d/4 =7 mod 8 (2) 27%/%(7)
d=1mod 8 Cisfa(T)?
d=5mod 8, |d| <300 | Ll M dE 2
= g 2 2 2 f(7o0)®
In the case d = 5 mod 8, we should set T; = b;;\ﬁ where
(aom boo, COO) = [(% (1))(61’ b, C)LLS )
(a0, bo, co) = [( (1) (2) )(a, b, C)LLS )
(a1, b1, 1) = [(§3)(a, b, )]y

,N)=1 and b/ = B mod 2N.

72(_—63;1\/8)5'

fM%ﬁ)S_

2

2

2

Example 7.6.6. We have h(—103) =5 and

f(70)®

 H(m)®

) := [(a,b,¢)]n denote any form equivalent to (a,b,c)

[H(d)]s, we have the class invariant

[H(d)]2, we have the class invariant

Then, we have

[H (—103)]4s = {(17, 769, 86983), (19, —767, 7742), (1,1, 26), (23,865, 8134), (29, 97,82)}.

According to Proposition 7.6.5,
17 (—7694-\/—103)
48 f2 34

)

¢ () G (),

2§ (—865—&-\/—103) 29 (—97+\/—1o3
4812 16 ’ C48 f2

58

86

)



are roots of x° + 2x* + 323 + 322 + x — 1. This is a much simpler polynomial than

Y os(z) = 2° + 702922862801252* + 854752836592968752°
+494100564916551413765625000022 + 133555277201141655061721191406252
+28826612937014029067466156005859375,

although they generate the same splitting field.

7.7 Shimura reciprocity

In this section d is a negative discriminant, not necessarily fundamental, and o = (—by + V/d)Z + Z is the
corresponding order, not necessarily mazrimal, of K = @(\/Z), where A is the corresponding fundamental
discriminant.

The automorphism group of the whole modular function field (of every level) is discribed by GLy(Q).
The operation of this group on a given modular function f of level N with coefficients in Q((x), i.e.

f € A(D(N),Q(¢w)) = Ao(T(N)) NQ(¢w)((¢'™))

is as follows. Every matrix m € GLy(Q) can be written as m = w.v where u € GLy(Z) and v € GL} (Q).
The representation is not unique, but this does not matter for the definition

f" () = (o),

where v7 is the usual fractional-linear transformation, and f* has the following definition. First project
u modulo N to obtain a matrix @ € GLy(Z/NZ). This matrix @ can be written as a product of matrices
of the form (}9) and matrices in SLy(Z/NZ). The former matrices operate as (x — (% and the latter
operate via their lifts to SLy(Z). Shimura reciprocity is then the simple statement that, for any 7 € K NH,
any modular function f with no pole at 7, and any idele z € Jk,

F(r) TR = G (),
where m(z) is the matrix representing K-multiplication with respect to the Q-basis {7, 1}. Explicitly,

(mr)p : Ky — GL2(Qy)

ST 41— (t—i—(T:-'F)s —7;?5) )

First, it turns out that an idele responsible for transforming j—values can be given by

a pta
2y = _bJ”f pla,ptc. (7.7.1)
ST g plap|e
The matrix in G’LQ(Q) corresponding to this z~! by Shimura reciprocity applied to modular functions
evaluated at 71 = M factors into w.v, where v = (! ®79/2) € GL;(Q), and u € GLy(Z) has
components
o b=h1
“3 ) pfa
—by—b
Uy = f _OC> pla,pfc. (7.7.2)

—b1—b b1 —b
I — a

{‘“) pla,plc
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Theorem 7.7.1. Let a and b be o-ideals. Suppose 0 = MZ—{—Z, b= #Z—i—az, and oy 1s defined
by the Artin symbol (271, K®/K) where z is the idele with components (7.7.1). Then,

Theorem 7.7.2. The following are units in Q(j(0)).

LIA@E  A@A )
N RE = AP

for any o0-ideal a, and

NaG% provided a*> = (Na)o,
A(a)A(b)

[?]W for any o-ideals a and b.

Proof. The first two displayed expressions are invariant under scaling a by principal ideals, so it suffices
to prove them when a = p is prime. O

In addition to the idele (7.7.1), which moves j—values, it is useful to isolate those ideles which fix the
J—values. These will be those for which z, € o.

Theorem 7.7.3. Let o = mZ+Z with 1, = w be an order of K, and let f(7) € Q({n)((¢YY)) have
level N. The action of Gal(K®/K (j(0))) on f(11) can be identified with (o/No)* using

my, : (0/No)* — GLy(Z/NZ)
Tt (s as)

For any Z € (0/No)*, Shimura reciprocity becomes f(71)?
for which z, € o, for allp and z, = Z mod No, forp | N.

= (7). 2 can be lifted to any idele z

7.8 Singular Values of the n Function
The goal here is to understand evaluations such as

-1/8 1
n(v—=>5) = 9—3/45—1/4 (M) 7T—1/4P(_(1)>1/ I'( 1/8
2 11
20

)1/8°

)VA0() oI
AT AT

85|83 e

NESHEYE

B|5|8e
\_/

There is always a transcendental product of I' functions and another algebraic factor where units appear.

In this section let d < 0 be a fixed discriminant and let A and f = d/A be the associated fundamental
discriminant and conductor. Also, set h = h(d), let w be the number of roots of unity in Q(v/A), and
set x(n) = (%) to be the usual Kronecker symbol. The I' factor quantitiy I'y; > 0 appearing in the
Chowla—Selberg formula satisfies

Al
log(4m+/|d| %) = Z ;fgg logI" (n/|A]) + Z

) log p.
p"Hf
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Weber’s class invariants in Proposition 7.6.5 succeed in generating very small defining polynoimals.
Weber’s invariants fail to always be units and they also fail on discriminants = 5 (mod 8). The following
simple theorem, proved in Theorem 7.8.3 below where the conjugates of X; over Q are given, provides
class invariants that are always units and directly evaluates the singular values of . While the minimal
polynomial for X is quite large, it is frequently the case that a fractional power of X; has a much smaller
minimal polynomial, as illustrated in Examples 7.8.4 and 7.8.5. Neither Weber’s units nor the units of
Theorem 7.7.2 enjoy the following full-rank property.

Theorem 7.8.1. Let (a; = 1,b1,¢1) be in the identity class in H(d) and define X; to satisfy

_ —by V1Al — 4h h
a2 = G ()X,

Then, X, € Q(j(w)), and for each b € H(d) we will have a Q—conjugate Xy. The set of Xy for real
b and | Xo|? = X, X for the imaginary pair b,b generate a system of units of full rank.

For much of this section, a modified domain for the reduced forms will be more convenient. We
take the usual fundamental domain but map the arc |7| = 1, 7/4 < argT < 7/3 to R(7) = —1/2 by
7+ —1/(7 + 1). The resulting new definition of reduced will be called reduced’.

. . (a,b,c) (a,-b,c)
(a,b,c) (a,-b,c)

Figure 7.1: 7, . € H for reduced (left, usual domain of I'(1)) and reduced’ (right) forms (a, b, c)

Define a modified n function as
() = Im(7)" (7).
The point of this slight modification is that now the absolute value remains invariant under SLy(Z):

A(r+1) = Guii(r),  7(=1/7) = (=1/7)"*i(7). (7.8.1)

Also, set Nope = N(Tape) and Jope = J(Tape), etc. We will almost exclusively use the identity form in
H(d) in the form (a; = 1,by,¢1). Hence, 7; and j; etc. will denote the values of these functions at the
corresponding 7y p, o, = (—b1 + \/E)/2

Our first task is to resolve the unspecified argument of the n—product in the Chowla—Selberg formula.

Proposition 7.8.2. Fiz a set of {(a,b,c)} of representatives of H(d). There exists a 48" root of unity
¢k and a p € Q(\/d) of absolute value one (both depending on the choice of the {(a,b,c)} ) with

[T ese = i

(a,b,c)eH

b

a,bc) a

With the reduced’ set of representatives we may take =1 and k = — Z(
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Proof I. Because of (7.8.1), the truth of this proposition is independent of the choice of representatives
of H(d), hence we may take them to be reduced’. The Chowla—Selberg formula gives

H |7a,p.cl = Ta-

(a,b,c)eH

For the pair of imaginary forms (a, b, ¢) and (a, —b, ¢) we have M, p . = Ta,—b,c, SO |Tap.cla—b.el = Nab.cTa,—b.c-
Next, the real forms split into two case depending on their location in the fundamental domain. On b = 0
(i.e. R(7) = 0) we clearly have 7o pc| = Tape. On b =a (i.e. R(7) = —1/2) we have o pc| = CasNape- O

Proof 1I. Squaring both sides of the Chowla-Selberg formula and using the fact that 7,4 = 74, -5 gives

H ﬁa,b,c H ﬁa,fb,c = F?l

(a,b,c)eH (a,b,c)eH

Since the map (a,b,c) — (a,—b,c) is inversion in the class group, each form (a,—b,c) is equivalent to
some (a’,b', ) from the original choice of representatives of H. Furthermore, in each case, by (7.8.1), we
have an equation of the form 7, . = C@bvc,u(ll’/ : Ja v~ Multiplying these all together and taking some
square root gives the result with p!/® in place of /4. To show that the quantity under the eighth root is
a square, we first notice that it suffices to prove the result for the reduced set of representatives; any set
of representatives transforms to this modulo a 24™ and a fourth root by (7.8.1). With this reduced set
of representatives, the reciprocal transform in (7.8.1) is only applied with 7 on |7| = 1, so the quantity
T/T is a square. O

Theorem 7.8.3. Fiz a set of {(a,b,c)} of representatives of H with (a; = 1,b1,¢1) being the identity.
There ezists a polynomial f(x) € Qx] independent of the choice of representatives, and for each form
(a,b,c), there exists a pap. € K 1= Q(v/d) (depending on the choice of representative) of absolute value
one with

na,b,c .
(Xa,b,c ::> (_1>b1hﬂg,b,c 134 = f(]a,b,C)-

Furthermore, these h quantities X, are roots of a monic irreducible polynomial over Z with constant
coefficient (—1)". The value of X corresponding to the identity form X, is a positive real. If (a,b,c) is
reduced’ and real (i.e. b=0 orb=a), then p}, = 1.

Proof. We can assume wlog that the forms (a;, b;, ¢;) are reduced’. Let ay, ..., a;, be the corresponding

ideals MZ + a;7Z with o = a; being the identity. The norm of a; is given by Na; = a;, and we use
the following definition of the A function on lattices:

AnZ +w7) = wy () = (2)°3(wio) 7 (2) (782)
This is independent of the choice of basis (wy,ws) of the lattice and homogeneous of degree —12 as

A(Xa) = A"A(a). By (7.8.2) and by Proposition 7.8.2, with k := ", b;/a;, we have the equalities

2 = (00,00 ),

a;,bi,ci

2

(—1) T2 = T2 000 A ).

i
Thus, if we set fiq4, b, ¢, = 1, then X; has the representation

A(O)h _ (—1)blh+kHNﬂ;6

[T a?A(a)
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and so by Theorem 7.7.1, X; € K(ji1), and by the first two assertions of Theorem 7.7.2, | X;| is a unit.
Since X is real and j; is real, X7 € Q(j;) and X is a unit. Now let b = #Z + aZ correspond to any

one of the reduced’ forms (a, b, c), and we will purposely confuse (a,b,c) and b notationaly. Theorem
7.7.1 also gives a 0 = gy, € Gal(K?"/K) with

A(b)"

o . o bih+k
j7 = j(b), and X7 = X, = (—1)""* TL ®A(ab)

For each i, the ideal a;b is equal to some other a; modulo principal ideals as this is the definition of the
class group. Hence, for an accordingly defined operation ¢ + b on the indicies of these ideals, we have
a;b = \;a;4p for some \; € K. Inserting this into the last equation gives

:( )bth /\12 ng%’h‘f
GA(az) abh F?l4 .

X, = (—pph_ A0 mme
" Hz ?)\z 12A(ai+b) N

We should therefore take p, = a="11; A2, which is clearly an element of K. Since a = Nb and \;0 = azbaZ b
we see that p is a generator of the principal ideal b2" /Nb" = b"/b", and therefore that |u,| = 1. This
formula g, = As/Ay Where b" = \y0 requires care, as explain below; only pg is uniquely determined. For
non-principle reduced’ real forms b, for which b = (Nb)o, it must be that & is even and therefore that

po = 1.
As for the constant coefficient, at this point all assumptions about reducedness of forms can be
dropped and ay, ..., a; can be an arbitrary set of representatives of H(d). Similary, b can be any o—ideal.

For a principal ideal Ao, let [\o] denote a generator \. As K contains at worst 12" roots of unity, only
[a]'? is well-defined. The formula for X and the Chowla—Selberg formula take the forms

(—1)b1hXb — (@)Ghr—m[bh]mA(b)h

Bk

1= )12hF_48[H a?]?IL;A(a;)*  for any h,

2

—-1= (m)ﬁhF 2L, 2ILA(e;)  for odd A

In order to prove these, it is enough to notice that the right hand sides are functions of only the ideal
classes and that the formulas are true when the ideals are reduced’ as above. The h/2™ and the h'!
powers of the last two equations show that II;X,, =1 when h is even and odd, respectively. O

Example 7.8.4. For discriminant —103, the five quantities
ﬁ%21026 B <—5 + v —103> 77521013 B (5 + v —103> 77%291 13
T —5—+/—103) T’ 5—+/—103) T#,; "’
- (5 +/—103 )” ar (—5 + \/—103)12 G
5—+/—103 ’ —5—/=103) T,

24
1—‘—103

are roots of

x® — 18121127630x* + 1524409682770821566352>
—136995493433695208516352% + 609930147246371866050755x — 1.

Comparing with Example 7.6.6 , we see that this H" o5 does better than H’ 3 on account of the constant
coefficient 1 but is still much larger than Weber’s. However, Xllﬁ%;lﬁ becomes comparable to Weber’s as
it 1s a root of

2% + 6% + 1523 + 1622 + 8x — 1.
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Example 7.8.5. For discriminant —972, X117/07’§43 is a class imvariant.

34/3
(1 + 21/3)4

~3
1/72 71,0,243
Xion = Ty = (B = 2)@ = 2@ = 317
—972

With o : 23 s (323 and B : 33+ (33'/° as the generators of Gal(Q(v/=3, j1.0.243)/Q(v/—=3)),

(=: 2)

=3 =3 =3
o 1774261 2 ¢ Mi,—261 20 7 o628 o —7"9,—628 g2
4 1/3 - ) 4 F1/3 - ’ 12 Fl/g - ’ 12 Fl/g -

| AV —972 —972 —972

3/4 ~3 3/4 =3
; (—6+ \/—972) Ti686 _ jop? o <6+ \/—972> 7,636 _ a2
2P\Z6—yoo2) T8 T \6— v=O72

F1/3 =¥,
972 972

3/4 ~ 3/4 ~
- (9+ \/—972‘> M ifsa 25 <—9+ \/—972'> My 410 JUcr
12 =t - '

9— /=972 /3 -9 — /=972 /3

—972 —972

Before trying to predict if X 11 /™ is a class invariant, we should first predict using Shimura reciprocity
which (hopefully small) integral power of X 11 /2% is a class invariant. To do this, we will need the functions

f((%?)ﬁ)zﬁn(f , «a,0>0, ged(a,B,0)=1

For a fixed determinant a0 = n, these functions with the  chosen unique modulo § are permuted up to
241 roots of unity by I'(1), hence the 24" powers of these functions, which are ¢)(n) in number, are the
roots of a monic polynomial over Z[j(7)]. With the reduced’ representatives (a,b,c), we can write

a1/4<‘b1_]1a:b

X, = 18 (7.8.3)
' 11 f((5 7 0),m)

(a,b,c)

where the product excludes the identity form (a3 = 1,b1,¢1), and 71 = T4, 4,.c,- The 48 roots of unity
and the f functions present no problems for Shimura reciprocity: they are modular functions of level 48a
evaluated at 7. What needs extra attention is the fourth root of the integer Ila =: t. Set K = Q(+/d).
For t € QQ, we have
t| € Q% or
e K o —d e Q? or
—d|t| € Q2.

In the case t'/* ¢ K, we simply must square both sides and consider powers of Xl1 /2 YWhen it is in
K® we need formulas for its conjugates under Gal(K®"/K). This is trivial in the first case as it is solved
by the Kronecker symbol: we have explict representations /s € Q((ys|) such as

VE=+ &+ &+ &+
V=@ +GF +F +&+ &+ + ¢

and the action of o : ( — (¥ is given by /57 = (£) /5.

The third case also poses no problem as the essential quantity is the square root of a element of K.
For this we have /7 = (gn(—1/7)/n(7) and the action follows from Shimura reciprocity.

The second case of K = Q(i) presents the greatest difficulty. In one approach, analogous to /s €
Q(Cqy5/), tY* can be expressed explicitly as a modular function of level 48|¢| (this needs to be checked,

92



the unambitious bound 256|t|*> is used below) evaluated at i, and the action of K*/K on t'/* can be
determined via Shimura reciprocity:

/4 ws(1) + 25(i) " 77(%)

x5 defined by (4.9.2).

2 n(i)’
However, there is no obvious pattern here and the approach quickly becomes intractable. Class field
—1 ab
theory: the idele that we are using for mapping j; to j . via j§z KEIE) Jape 18 given by (z,), where

the components are defined in (7.7.1). One can then find an # € K* with zz7' = 1 mod ¢, where
modulus ¢ can be taken as —256¢® since this is the discriminant of the polynomial X* —¢. Mapping xz~*

to an ideal (z271) via
(:szl) _ Hpordp(xz‘jl)
P

gives an ideal prime to ¢, hence the action can be determined from the relevant Frob, (K (t'/4)/K) (only
p prime to ¢ are relevant).

We now have formulas for the conjugates of X 11 /24 (or X 11 /12 in rare cases when /4 ¢ K?) assuming
it lies in Q(j;). If the assumption is wrong, the corresponding monic polynomial of degree h will not have
integer coefficients, and we try again with a higher power of X 11 /2% This must eventually succeed because
X7 € Q(j1). In order to be completely rigorous numerically, it must be pointed out that non-integrality
can be detected and proven, but integrality cannot be proven numerically. Therefore, when the numerics
strongly suggest that the coefficients are integers, we can invoke Theorem 7.7.3 to most likely prove that
the given power of Xl1 /2 is in Q(j1); we just need to check the action of the finite group o/No where N
is the level of the function in (7.8.3).
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Chapter 8

Hypergeometric Functions

8.1 Basic Properties of the ,Fi(z) and 3F,(x) Series

Proposition 8.1.1. The formula (4.9.3) is correct for N = 2,3,4,5 at least for —iT > 0 (so j(1) > 1728).

8.2 Jacobi’s Inversion Formula and Generalizations

8.3 Solution of the General Quintic by Modular Functions

From Proposition 4.9.5,
(220 + 22821 + 494210 — 2282° + 1)?

2210 — 1125 — 1)5
where j is the j function and z5 is the Hauptmodul for I'(5) defined in (4.9.2) (the reciprocal of the

Rogers-Ramanujan continued fraction). The solution for x as a function of j in this equation is the basic
irrationality that can be used to resolve the simple group As/1 in the normal series

(8.3.1)

j =

1< A5<S55

for S5. The factor group Ss5/As =~ Zs corresponds to taking the square root of the discriminant of the
quintic.

Proposition 8.3.1. Let F = Q(a,b,¢,(5). The splitting field of the quintic X* + 5aX? + 58X + v is
F(V/D,z) where D is the discriminant of the quintic and

. _ 129
s == 60’ 60 | 1728
j zFl( 0 T)
5

11 a3t
F— =S 60’ 60 |1728

Tr =

5
and j is some element of F(\/D).

Proof. Let X, ..., X, be the roots of the quintic, and let /D = Hi<j<Xl' — Xj;) denote a fixed square

root of the discriminant (D is not a square in F'). Then, Gal(F(Xy,...,X4)/F(vV/D)) C As.
Let Iy denote the group of Mobius transformation on C,, giving the 60 symmetries of the regular

icosahedron. We have already seen o
]I60 >~ F(l)/F(5) ~ A5,

with the correspondence on generators given by
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element of g ‘ element of T'(1)/T(5) ‘ element of As

T Gl T T(5) 7= (01234)
xs 221 S T(5) o = (12)(34)
where ¢ = %ﬁ and ¢ = %5 For any m € As, let M, denote the corresponding element of Igy. Set (for
i=0,...,4)
4 ..
ti=>» X
=0
Then, the action of A5 on the t; is
t G 0 0 0 t
B C G 0 0 to
ts | | 0 0 ¢ 0 ts |’
ty 0 0 0 ¢ ty
t 1 —¢ ¢ -1 t
- o | 1 -9 -1 1 ¢ to
ls NG ¢ 1 -1 —¢ ts
21 -1 ¢ —¢ 1 21

Next, note that that vanishing of the coefficients of X* and X3 gives 0 = ¢y = t1t4 + tot3, and set

2 14
L T
! s (8.3.2)
bt
t1 ty
The action of A5 on x and ¥ is given by
_ or — 1
T(x) =G lw, o(x)= ,
T —¢
< (8.3.3)
7(2) = %z, o(z)= 9T -1
5 ? i‘ _ (b N

This means that the corresponding values of j and j (see (8.3.1)) are fixed by ¢ and 7, hence ele-
ments of F(v/D). Since x was defined in terms of the X; rationally over F, we have F(vD,z) C
F(Xo, X1, Xo, X3, Xy).

In order to establish the proposition, we must show that each X; can be obtained as an element of
F(V/D, x). Once we know = and 7, we know the ratios of the ¢; by (8.3.2). Hence the ratios of the roots
X, are known since they are the inverse Fourier transform of the ¢; and ty = 0. Once we know the ratios
of the roots we know the roots because of the equation

S U BT
Xo Xy Xy v’

so it suffices to demonstrate that Z is an element of F(v/D, x). The reason for this lies in (8.3.3). Every
transformation in g is defined over Q((5). Therefore, for a given M € I, if M denotes M with the
automorphism (5 — (? applied, then we have

m(z) = My(z) = 7(z) = M,(Z), 7€ As, (8.3.4)
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since this holds on generators. Now let My, -+, Mg denote the elements of Igy so that {M;(z)}; is a list
of conjugates of = under As. Since (8.3.1) has disinct roots as long as j # 0, 1728, co, this list contains 60
distinct elements. From (8.3.4) we see that {M;(z)}; and {M;(Z)}; are permuted identically under As,
that is

W(MZ(CL’» = MJ(ZL') — W(MZ(CZ’» = Mj(i’), T e A5.

This means that the solutions for the a; in the linear system

60
My(z) = Z apM;(z)Ft, i =1,...,60
k=1
are all fixed by A5 hence elements of F(v/D). O

Remark 8.3.2. [t is possible to be much more explicit about the relationship between x and . In fact,
we have

Vol — 1126 — ¢ (T2° — 1)T + 2" + 72? GF(\/E)
Vg — 1728 (ZE13 + 3928 — 26:E3)i‘ — 26210 — 3925 +1 '
See [7].

Remark 8.3.3. This gives a solution to quintics with a missing x* and 3 term. Unfortunately, it is
not possibly to transform the general quintic to this form without introducing an accesory irrationality
of degree 2. The modular equation (8.3.1) is simply too rigid to support a rational transformation in
general. In a similar fashion, seventh degree equations with groups of order 168 can be resolved with the
basic irrationality

_1 13 9 o 5 19 11 2
427 427 14 | 1728 427 427 1 1728
]E:st( 4 6 5 >J 423F2< 5 8 e )
T = 147 14 147 14
17-3 i 318 ’
T 427 427 14 | 1728
J 42 3F2< 9 10 b )
147 14

Here, the degree of the accessory irrationality need to transformation the general seventh degree of order
168 to this form is now four.
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Chapter 9

Mock Modular Forms
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