
MATCHING MATHEMATICA PATTERNS

DANIEL SCHULTZ

Abstract. A process to construct machines recognizing mathematica patterns is discussed.
This makes the pattern matching process completely transparent, and we attempt to either
match some of the behaviour exhibited by WRI’s implementation or improve on it.

1. Introduction

1.1. orderless. When matching f[a,b,c,d,e] against f[x ,y ] with an orderless f, one
will find that WRI’s matcher does not even consider the possibility x=b,a, y=c,d,e. This
is apparently because b,a is itself out of order and the pattern matcher does not change
the order in sequences. While not completely ideal, we reproduce this behaviour simply
because it cuts down on the number of possiblity to be tried while still retaining some useful
functionality: 25 is much smaller than 5!.

1.2. flat. When matching f[a,b,a,b,c,d,e] against f[(x )..,y ,z ], we allow x to
match f[a,b].

2. Architecture of the compiler

Besides the pattern that is to be constructed, the function for converting a pattern to a
machine takes the following arguments:

• A stack of symbols called vars which consists of the variables currently being recorded
(from Pattern). If the the symbol x is uninitialized, the instruction start(x) will at
run time cause the instruction capture(x) to append the local variable cur to x. The
instruction stop(x) will stop such appends and put the symbol x in the initialized
state. If the symbol x is initialized, the instruction start(x) will at run time cause
the instruction capture(x) to start comparing with the currently stored sequence for
x. Then, the instruction stop(x) will check that the number of expressions checked
by the captures matches the original number of values captured in the initial start(x)
- stop(x) pair.
• A stack of expressions called tests. The instruction test(f) will apply f to the value

of the local variable cur and fail if the return is not exactly True. This is used to
implement PaternTest.
• A boole ishead indicating if we are in the head of a pattern.
• A boole isFlat indicating if we are in the arguments of a flat head.
• A boole isOrderless indicating if we are in the arguments of an orderless head.

We have the following runtime local variables of the pattern matcher machine:

• An integer i which starts at i = 0. This is the index of the current child we are
looking at (i = 0 correspondes to the head).

1



• An expression cur which is the most recent child looked at in the current subexpres-
sion.

The instructions down (resp. up) are responsible for moving down from parent to child (resp.
up from child to parent) and constructing a new stack frame for i and cur (resp. destroying
it) These are all operation done at runtime when the pattern matcher is trying to match, and
not done in the process of compiling a pattern. The most important routine with respect to
the variables i and cur is the next routine, which is responsible for choosing a new argument
from the arguments of the expressions passed to the matcher.

3. basic routines

3.1. bootstrapping. To compile the pattern p at the top level we use

start

set i = 0

p

fail if i 6= 1

pass

The box around p means that it should be compiled recursively according to the rules given
below and its start and end nodes should be spliced in. p should be compiled with vars and
tests both empty and ishead=True. This bootstrapping step is a little awkward because
it means that the final pattern matcher must be passed e[] when matching e. However,
this is the simplest way to ensure that BlankSequence and BlankNullSequence do not get
erroneously matched at the top level.

3.2. Routine for patternless expressions. If p is a pattern free from expressions related
to pattern matching, it may be compiled as

start

next

fail if !SameQ[p, cur]

∀f∈tests fail if eval(f [cur]) 6= True

∀x∈varscapture(x)

end

2



The routine next depends on the context supplied by the context in 3.3 and is described in
Section 3.4.

3.3. Routine for nodes without pattern-related heads. The pattern p0[p1, . . . , pn]
where p0 has no meaning related to patterns (basically it’s not in Section 4) may be compiled
as

start

next

down

set i = 0

p0

fail if i 6= 1

initialize an array of arguments to be matched

p1

set i to index of first available argument

p2

set i to index of first available argument

pn

fail if any arguments are still available

end

All of the pi should be compiled with empty vars and empty tests. p0 should be com-
piled with ishead=True and p1, . . . , pn should be compiled with ishead=False and isFlat,
isOrderless set according to p0. The instruction “initialize an array of arguments to be
matched” needs to mark each of the children of the expression e to be matched as available.
When the instruction next in Section 3.4 consumes a child via ei++ this child of index i
needs be marked as unavailable. When there are no more available children, the instruction
“set i to index of first available argument” should set i to an integer greater than the length
of the expression to be matched. This will ensure that all calls to i + + or ei++ fail.

3.4. Routine next for heads and childs. Incrementing i when it is already past the
length of the expression e to be matched should be considered a fail. In all of these routines,
the increment on i (i + +) will be a simple “add one” when the corresponding head is not

3



orderless. However, when the head is orderless, it should move i to the next available child.
Similarly, ei++ should mark the ith child as unavailable before incrementing i. The following
one routine is for head mode (ishead=True). The values of isFlat and isOrderless do
not matter in this case. Routine next with ishead=True:

start

fail if i 6= 0

cur = ei++

end

The following are all for child mode (ishead=False). Routine next with isFlat=False

and Orderless=False:

start

cur = ei++

end

Routine next with isFlat=False and isOrderless=True:

start i + +

cur = ei++

end

Routine next with isFlat=True (head f) and isOrderless=False:

start

cur = ei++

cur = f [cur]

end

AppendTo[cur, ei++]

Routine next with isFlat=True (head f) and isOrderless=True:

start i + +

cur = ei++

cur = f [cur]

end

.

i + +

AppendTo[cur, ei++]

4



Note that WRI’s implementation only gives next such a special behaviour with respect
to Flat when it is in a Blank[] at the top level of a child (possibliy only having a Pattern

object as a parent).

4. pattern heads

4.1. Blank. Blank[] may be compiled as

start

next

∀f∈tests fail if eval(f [cur]) 6= True

∀x∈varscapture(x)

end

Blank[h] may be compiled by inserting an instruction testing the head of cur after the next
instruction.

4.2. BlankSequence. BlankSequence[] may be compiled as

start

next

∀f∈tests fail if eval(f [cur]) 6= True

∀x∈varscapture(x)

end

The next routine here should ignore the isFlat flag, i.e. set it to false.

4.3. BlankNullSequence. BlankNullSequence[] may be compiled as

start

next

∀f∈tests fail if eval(f [cur]) 6= True

∀x∈varscapture(x)

end

The next routine here should ignore the isFlat flag, i.e. set it to false.
5



4.4. Pattern. Pattern[s, p] for a symbol s may be compiled as

start

start(s)

p

stop(s)

end

Before p is compiled, s should be pushed onto vars. Then, p should be compiled with
parameters matching those of the calling environment. After s is compiled, vars should be
popped.

4.5. PatternTest. PatternTest[p, f ] may be compiled as

start

p

end

Before p is compiled, f should be pushed onto tests. Then, p should be compiled with
parameters matching those of the calling environment. After p is compiled, tests should be
popped.

4.6. PatternSequence. PatternSequence[p1, . . . , pn] may be compiled as

start

p1

p2

pn

end

All pi should be compiled with parameters matching those of the calling environment.

4.7. Alternatives. Alternatives[p1, . . . , pn] may be compiled as

start

p2p1 pn

end

6



All pi should be compiled with parameters matching those of the calling environment.

4.8. Repeated. Repeated[p] may be compiled as

start

p

end

p should be compiled with parameters matching those of the calling environment.

4.9. RepeatedNull. RepeatedNull[p] may be compiled as

start

p

end

p should be compiled with parameters matching those of the calling environment.

4.10. Condition. Condition[p, f ] may be compiled as

start

p

fail if eval(f) 6= True

end

p should be compiled with parameters matching those of the calling environment.

4.11. Optional. Optional[Pattern[s, p], v] for a symbol s may be compiled as

start

start(s)

p capture(s, v)

stop(s)

end

Of course vars should be pushed with s and popped around the compilation of p. The
special two argument form of capture captures into s not the value of cur but the constant
value v.

7



TODO: see if this matches WRI implementation, in particular, do the tests from PatternTest
affect the capture of v?

5. implementation issues

It seems very possible to match mathematica patterns by machine. Many nodes in the
resulting machine have more than one outgoing path: the pattern is said to match if there is
some path from the start node (of the bootstrapping step) to the pass node without hitting
a fail. In practice this need to be implemented via backtracking by saving the state every
time a decision is made.

5.1. substitution of captures. There is an issue of how the captured variables should be
substituted into expressions when they require evaluation (for example, in Condition). It
seems reasonable to leave an uninitialized variable as itself and splice in initialized variables.
It seems that WRI’s implementation sometimes treats uninitialized variables as Sequence[].

5.2. side effects. If the main evaluations implied by Condition or PatternTest involve
computation with side effects, we should consider the behaviour of the pattern matcher to
be undefined, especially if these side effects include changing the attributes of the heads
involved in matching!

5.3. Repeated[BlankNullSequence[]]. The savvy reader will have noticed that x ..

results in a machine with an infinite loop. Such infinite loops only result from the back
edges of Repeated and RepeatedNull, and this problem can be resolved by failing if the
value of i is the same as it was the last time the back edge was taken.

8


