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Abstract. By adding certain equianharmonic elliptic sigma functions to the coefficients
of the Borwein cubic theta functions, an interesting set of six two-variable theta functions
may be derived. These theta functions invert the F1

(
1
3
; 1
3
; 1
3
; 1|x, y

)
case of Appell’s hy-

pergeometric function and satisfy several identities akin to those satisfied by the Borwein
cubic theta functions. The work of Koike et al. is extended and put into the context of
modular equations, resulting in a simpler derivation of their results as well as several new
modular equations for Picard modular functions. An application of these results is a new
two-parameter family of solvable nonic equations.

1. Introduction

The F1 function is defined for |x| < 1 and |y| < 1 by

(1.1) F1 (a; b1; b2; c|x, y) =

∞∑
m,n=0

(a)m+n(b1)m(b2)n
(c)m+n

xmyn

m! n!
,

where (a)n = a(a + 1) · · · (a + n − 1), and an analytic continuation for Re(a) > 0 and
Re(c− a) > 0 is given by the integral representation

(1.2) F1 (a; b1; b2; c|x, y) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
ta−1(1− t)c−a−1(1− xt)−b1(1− yt)−b2dt.

In [12] the striking identity

(1.3) F
(
1− x3, 1− y3

)
=

3

1 + x+ y
F

((
1 + ωx+ ω̄y

1 + x+ y

)3

,

(
1 + ω̄x+ ωy

1 + x+ y

)3
)

was derived in connection with the common limit of a three term iteration. Here, ω = e2πi/3,
F (x, y) = F1

(
1
3 ; 1

3 ; 1
3 ; 1|x, y

)
, and the function F1 as defined in (1.1) is the first of the four

two-variable hypergeometric functions introduced by Appell [1]. We will show that such an
identity is part of a larger class of identities and derive the next member of this class,

(1.4)

F

(
x3(y2 + 3)(xy2 − 3x− 6y)

(xy − 3)3(xy + 3)
,
y3(x2 + 3)(yx2 − 3y − 6x)

(xy − 3)3(xy + 3)

)
=

xy − 3

xy − 3x− 3y − 3

× F
(

(x2 + 3)(y + 3)3(yx2 − 3y − 6x)

(xy + 3)(xy − 3x− 3y − 3)3
,
(y2 + 3)(x+ 3)3(xy2 − 3x− 6y)

(xy + 3)(xy − 3x− 3y − 3)3

)
.

Due to the reduction formula

F1(a; b1, b2; c|x, x) = 2F1 (a, b1 + b2; c|x) ,
1
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the specialization of x = y in (1.3) and (1.4) reduces them to transformations involving the
one-variable function

F (x) = 2F1

(
1
3 ,

2
3 ; 1|x

)
.

Thus, (1.3) and (1.4) can be viewed as two-variable generalizations of modular equations
arising from Ramanujan’s theory of elliptic functions to base three (theory of signature
three). For this reason, we first review several of the key results of this theory in Section 2
before stating the main results on two-variable generalizations in Section 3. Sections 4 and
5 introduce six Θ constants that are central to obtaining (1.3) and (1.4). Finally, Section
6 gives motivated and simple proofs of (1.3) and (1.4) based on identities of Θ functions,
while Section 7 gives some applications of the modular equations contained in (1.3) and
(1.4).

The author would like to thank Armin Straub for verifying identities (1.3) and (1.4)
mechanically using the Holonomic Systems Approach in [13] and Tito Piezas III for pointing
out Remark 7.7. Much thanks is also due to the anonymous referees in improving the
presentation of this paper.

2. Definition of the one-variable cubic modular equations and statements
of known results

In this section we will recall several important results on cubic modular equations. The
hypergeometic function that is central to this theory is the Gauss hypergeometric function

F (x) := F (x, x) = 2F1

(
1

3
,
2

3
; 1|x

)
,

as mentioned in the introduction. The defining relation of a cubic modular equation is

Definition 2.1. The variables m, α, and β are said to be related by a one-variable cubic
modular equation of degree n ∈ N when the simultaneous relations

(2.1)
F (β)m = F (α)

F (1− β)m = nF (1− α)

hold.

The variables α and β are known as the moduli and the variable m is known as the
multiplier. Such modular equations are intimately related to the principle Hecke congruence
subgroup Γ0(N), which is defined as

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) | c ≡ N mod N

}
.

For example, from the theory of modular forms, we know that a one-variable cubic modular
equation of degree n induces a algebraic relation between α and β of degree exactly

(2.2) d(n) = [Γ(3) : Γ0(3n)] =
3n

4

∏
p|3n

p prime

(
1 +

1

p

)
,

and that m can be given as a rational function of α and β. Identities that make this
algebraic relationship explicit are known as cubic modular equations, and two examples are
given below in Theorems 2.3 and 2.4.
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In [5] and [6], the Borweins introduced Θ functions defined as (set q = e2πiτ and γ = 2+ω
3 ):

(2.3)

a(τ) =
∑
µ∈Z[ω]

qµµ̄,

c(τ) =
∑

µ∈Z[ω]+γ

qµµ̄,

b(τ) =
∑
µ∈Z[ω]

ωµ+µ̄qµµ̄.

These functions play a central role in cubic modular equations because of the parameteri-
zations given in Proposition 2.2, which are consequences of the Borweins’ result,

a(τ) = F

(
c(τ)3

a(τ)3

)
= F

(
1− b(τ)3

a(τ)3

)
.

A standard consequence of such a result in the theory of modular forms is that every
modular form of weight k with respect to the group

Γ1(3) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣ c ≡ 0 mod 3
d ≡ 1 mod 3

}
is of the form a(τ)kP (c(τ)3/a(τ)3), where P is a polynomial of degree not more than k/3.
Thus a(τ) and c(τ)3 generate the space of modular forms with respect to Γ1(3).

Proposition 2.2 (Catalog of Borwein Θ function evaluations). Suppose that m, α, and
β are related by a one-variable cubic modular equation of degree n. We then have the
following table for converting identities among Borwein Θ functions to modular equations
and vice-versa.

a(τ) = z, a(nτ) = z/m

c(τ) = α1/3z, c(nτ) = β1/3z/m,

b(τ) = (1− α)1/3z, b(nτ) = (1− β)1/3z/m,

where
z = F (α).

Directly from the definitions (2.3), we can derive the following identity between Borwein
Θ functions and its conversion to a modular equation via Proposition 2.2.

(2.4) a(3τ) = a(τ) + 2b(τ) ⇔ 3

m
= 1 + 2(1− α)1/3.

The following result on cubic modular equations of degree 3 is equivalent to Theorem 7.4
in [4] and is directly equivalent to (2.4).

Theorem 2.3. The following is a parameterization of the one-variable cubic modular equa-
tion of degree 3.

β = x3,

α = 1−
(

1− x
1 + 2x

)3

,

m = 1 + 2x.
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The following result on cubic modular equations of degree 4 is equivalent to Theorem
6.4 in [4] or [3, Ch. 33], where the parameter p = 2x

3−x was used.

Theorem 2.4. The following is a parameterization of the one-variable cubic modular equa-
tion of degree 4.

β =
x4
(
x2 − 9

)
(x2 − 3)3 ,

α =
x(x+ 3)3(x2 − 9)

(x2 − 6x− 3)3 ,

m =
x2 − 6x− 3

x2 − 3
.

Although Theorems 2.3 and 2.4 present the cubic modular equations of degrees 3 and
4, the degrees of the underlying algebraic relationship between α and β are d(3) = 3 and
d(4) = 6, respectively, in accordance with (2.2).

3. Definition of the two-variable modular equations and statements of
main results

For certain rational values of the parameters a, b1, b2, and c the Schwarz map associated
with the F1 function may be inverted by automorphic functions, and identities such as (1.3)
and (1.4) provide modular equations for these automorphic functions. The series in (1.1)
satisfies a system of partial differential equations given by [1, p. 182],

(3.1)

x(1− x)fxx = ab1f +
b1(1− y)y

x− y
fy +

(
(a+ b1 + 1)x− c− b2(1− x)y

x− y

)
fx,

y(1− y)fyy = ab2f +
b2(1− x)x

y − x
fx +

(
(a+ b2 + 1)y − c− b1x(1− y)

y − x

)
fy,

(x− y)fxy = b2fx − b1fy.

In fact, for general values of the parameters a, b1, b2 and c, the function F1(x, y) is the
unique solution that is holomorphic at (0, 0) and takes the value 1 there. At any point in
the complement of the singular locus Λ = {(x, y) | xy(1− x)(1− y)(x− y) = 0} there is a
basis of three holomorphic solutions. Let us fix a point w in C2 \ Λ and set ~η = (η0, η1, η2)
to be a basis of solutions at w. For every path p in C2 \Λ with initial point w and terminal
point, say, z, we may consider ~ηp(z), which is defined as the value of the solutions at the
terminal point when analytically continued along the path p. When the terminal point z
is the same as the initial point, the resulting value of ~ηp(w) must be related to the original
value of ~η(w) by an element of GL3(C) since the coefficients of (3.1) are single-valued on
C2 \Λ. This process gives a map from the fundamental group of C2 \Λ to GL3(C), which is
known as the monodromy representation of the system (3.1). A special case of the results
in [9] and a nice survey in [14] is a condition describing the cases when the image of the
monodromy representation is discrete and the Schwarz map is invertible. The Schwarz map
Φ takes paths from w to z (up to equivalence under homotopy) to points in CP 2 and is
defined by

Φ : (p, z) 7→ [~ηp(z)].
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The condition in [9, p. 66] and Theorem 3.1 of [14] is: provided all of the numbers 1 − a,
1 + a− c, b1, b2, c− b1 − b2 are rational numbers in the interval (0, 1), all of the numbers

1− b1 − b2 a− b1 b1 − c+ 1 c− a− b1 b1 + b2 − a
c− 1 a− b2 b2 − c+ 1 c− a− b2 b1 + b2 + a− c

must either be reciprocals of integers or non-positive numbers. In what follows, we will set
a = b1 = b2 = 1

3 , c = 1, and ω = e2πi/3 and consider the basis of solutions

(3.2)

η0(x, y) = F (x, y) ,

η1(x, y) = F (1− x, 1− y) ,

η2(x, y) = (−x)−1/3F

(
y

x
,

1

x

)
− (−y)−1/3F

(
x

y
,

1

y

)
.

These solutions can also be obtained as integral periods via the integral representation
(1.2),

(3.3)

η0(x, y) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
ta−1(1− t)c−a−1(1− xt)−b1(1− yt)−b2 dt,

η1(x, y) =
Γ(c)

Γ(a)Γ(c− a)

∫ 0

−∞
(−t)a−1(1− t)c−a−1(1− xt)−b1(1− yt)−b2 dt,

η2(x, y) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1
y

1
x

ta−1(t− 1)c−a−1(xt− 1)−b1(1− yt)−b2 dt,

for a = b1 = b2 = 1
3 , and c = 1. Whenever the series defining the ηi(x, y) do not converge,

the values of the ηi(x, y) should be computed via the integral representations (3.3). We
also note that if 0 < y < x < 1, then the ηi(x, y) are positive quantities.

The class of identities we seek to establish has the form given in Definition 3.1.

Definition 3.1. The variables m, α1, α2, β1, and β2 are said to be related by a two-variable
cubic modular equation of degree ν ∈ Z[ω] when the simultaneous relations

(3.4)

F (β1, β2)m = F (α1, α2)

F (1− β1, 1− β2)m = νν̄F (1− α1, 1− α2)F
(
β2
β1
, 1
β1

)
(−β1)

1
3

−
F
(
β1
β2
, 1
β2

)
(−β2)

1
3

m = ν

F
(
α2
α1
, 1
α1

)
(−α1)

1
3

−
F
(
α1
α2
, 1
α2

)
(−α2)

1
3


hold.

Note that we have five variables and three relations in these modular equations, so there
are a total of two degrees of freedom in choosing the variables m, α1, α2, β1, and β2.
Note also that a one-variable cubic modular equation of degree νν̄ may be obtained by
specializing the two-variable modular equation.

Proposition 3.2. A one-variable modular equation of degree νν̄ among m, α and β may
be obtained from a two-variable modular equation of degree ν among m, α1, α2, β1 and β2
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by means of the substitutions
α1 → α, α2 → α,

β1 → β, β2 → β,

m→ m.

As indicated by the examples (1.3) and (1.4), the relationship between m, α1, α2, β1,
and β2 that is induced by a two-variable cubic modular equation appears to be algebraic
with the degree of the underlying algebraic relationship increasing with |ν|. Theorem 3.3
makes the precise observation that when the defining relations of a two-variable cubic mod-
ular equation hold, C(m,α1, α2, β1, β2) is an algebraic extension of C(α1, α2) with degree
bounded by 24(νν̄)18. This is, of course, an extremely pessimistic upper bound on the
degree, but is probably near the best one can do without considering the prime factors of
ν in Z[ω]. The actual degree of this relationship is given by the index

d(ν) := [Γ(
√
−3) : (D−1Γ(

√
−3)D) ∩ Γ(

√
−3)]

where D is the diagonal matrix diag(1, νν̄, ν) and the group Γ(
√
−3), which is the mon-

odromy group of functions η0, η1 and η2, is defined in (4).

Theorem 3.3. Suppose that the variables m, α1, α2, β1, and β2 are related by a two-
variable cubic modular equation of degree ν ∈ Z[ω]. We then have:

(1) Any element X ∈ C(m,α1, α2, β1, β2) is related to α1 and α2 by a polynomial equa-
tion f(X) = 0 where the coefficients of f(X) are in C(α1, α2) and the degree of
f(X) is exactly d(ν). The polynomial f(X) may have repeated roots, and we have
the crude bound d(ν) ≤ 24(νν̄)18.

(2) The polynomials f(X) for the elements X = β1 and X = β2 do not have repeated
roots in the cases ν =

√
−3 and ν = 2. The degrees in these cases are d(

√
−3) = 9,

and d(2) = 18.
(3) Given that β1 and β2 are algebraically related to α1 and α2, the multiplier m is then

algebraically related to α1 and α2 by the explicit formula

m3 = (ν2ν̄)

(
∂α1

∂β1

∂α2

∂β2
− ∂α1

∂β2

∂α2

∂β1

)
β

2/3
1 (1− β1)2/3 β

2/3
2 (1− β2)2/3 (β1 − β2)2/3

α
2/3
1 (1− α1)2/3 α

2/3
2 (1− α2)2/3 (α1 − α2)2/3

.

The third part of Theorem 3.3 should be compared to the analogous result for one-
variable modular equations. If m, α and β are related by a one-variable modular equation
of degree n then the formula for the multiplier,

m2 = n
dα

dβ

β(1− β)

α(1− α)
,

follows easily as a corollary from Entry 30 in Chapter 11 of [2],

d

dα

(
2π√

3

F (1− α)

F (α)

)
= − 1

α(1− α)F (α)2
.

The analogous result for the function F1 (given, for example, in Lemma 2.4 of [16]) can be
used to derive the formula for the multiplier in Theorem 3.3, but we will derive this result
by using an identity of Θ functions in Section 5.
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The first example of a two-variable modular equation is the three term iteration of [11]
and [12]. If we start with three positive numbers a0 ≥ b0 ≥ c0, and form three sequences
according to ([12, p. 133])

(3.5)

an+1 = (an + bn + cn)/3,

b3n+1 + c3
n+1 = an+1(anbn + ancn + bncn)− anbncn,

b3n+1 − c3
n+1 = (an − bn)(bn − cn)(cn − an)/(3

√
−3),

then there is a common limit that satisfies

lim
n→∞

an = lim
n→∞

bn = lim
n→∞

cn = a0 F

(
1− b30

a3
0

, 1− c3
0

a3
0

)−1

.

The branches of the cube roots used to obtain bn+1 and cn+1 are not trivial, but they can
be chosen so that even-indexed terms in the sequences are all real numbers. The fact that
the common limit of the three term iteration can be expressed as the reciprocal of an F1

is equivalent to a modular equation for F1, which can be stated as a modular equation of
degree ν =

√
−3.

Theorem 3.4 (Proposition 2.5 of [12]). The following is a parameterization of the two-
variable cubic modular equation of degree 1 + 2ω =

√
−3.

β1 = x3, β2 = y3,

α1 = 1−
(

1 + ω̄x+ ωy

1 + x+ y

)3

, α2 = 1−
(

1 + ωx+ ω̄y

1 + x+ y

)3

,

m = 1 + x+ y.

In the process of deriving this modular equation, we find that iteration (3.5) has the
slightly more symmetric form,

an+1 = (an + bn + cn)/3,

(a3
n+1 − b3n+1)1/3 = (an + ω̄bn + ωcn)/3,

(a3
n+1 − c3

n+1)1/3 = (an + ωbn + ω̄cn)/3.

We will also establish a modular equation of higher degree.

Theorem 3.5. The following is a parameterization of the two-variable cubic modular equa-
tion of degree 2.

β1 =
x3(y2 + 3)(xy2 − 3x− 6y)

(xy − 3)3(xy + 3)
, β2 =

y3(x2 + 3)(yx2 − 3y − 6x)

(xy − 3)3(xy + 3)
,

α1 =
(x2 + 3)(y + 3)3(yx2 − 3y − 6x)

(xy + 3)(xy − 3x− 3y − 3)3
, α2 =

(y2 + 3)(x+ 3)3(xy2 − 3x− 6y)

(xy + 3)(xy − 3x− 3y − 3)3
,

m =
xy − 3x− 3y − 3

xy − 3
.

The parameterizing variables can be given as

x = 1−m
(

1− α1

1− β2

)1/3

, y = 1−m
(

1− α2

1− β1

)1/3

.
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By Proposition 3.2, Theorems 3.4 and 3.5 reduce to Theorems 2.3 and 2.4 when x = y.

4. The six Θ functions

The Schwarz map mentioned in Section 3 was studied by Picard [18], where a compli-
cated expression for the inverse of this Schwarz map was given. We will use a subsequent
simplification of Picard’s formula given by Shiga [19] as the basis for studying cubic modular
equations in two variables. Shiga’s simplification is presented in Proposition 5.4 in Section
5. We will introduce a set of Θ functions that are responsible for providing the automorphic
functions that invert (3.2). These Θ functions are holomorphic functions defined on the set
B = {(τ1, τ2) ∈ CP 2 : τ2τ̄2 < τ1 + τ̄1}.

Definition 4.1. For a = 2 or a = 6, set

Ta(u) =
2πe

πi
72

(23−7a)

33/8Γ
(

1
3

)3/2 ∑
z∈Z+ 1

a

e
π√
3
u2+2πiu(1+ 1

a
−u)+πiz2ω

, u ∈ C.

The six Θ functions Θi : B→ C are then defined by

Θ0(τ1, τ2) =
∑
µ∈Z[ω]

qµµ̄T6(µτ2), Θ3(τ1, τ2)=
∑
µ∈Z[ω]

ωµ+µ̄qµµ̄T6(µτ2),

Θ1(τ1, τ2) =
∑

µ∈Z[ω]+γ

qµµ̄T6(µτ2), Θ4(τ1, τ2)=
∑
µ∈Z[ω]

ω̄µ+µ̄qµµ̄T6(µτ2),

Θ2(τ1, τ2) =
∑

µ∈Z[ω]−γ

qµµ̄T6(µτ2), Θ5(τ1, τ2)=iω
∑

µ∈Z[ω]+γ

ω̄ωµ+ω̄µ̄qµµ̄T2(µτ2),

where qa = exp
(
−2πa√

3
τ1

)
and γ = 2+ω

3 .

The precise way that these Θ functions generalize the Borwein Θ functions is clearest
in Lemma 4.5 below, where they are expanded in series about τ2 = 0, a location where
the six functions reduce exactly to the functions a(τ), b(τ) and c(τ). The Γ(1/3) factor
in the definition of the functions Ta(u) is added for convieince so that T6(0) = 1. This is
equivalent to the classical evaluation of the Dedekind η-function at ω, i.e.

|η(ω)| = 31/8

2π
Γ

(
1

3

)3/2

,

which may be obtain from the so-called Chowla-Selberg formula [8, p. 110]. The three
functions Θ0, Θ3 and Θ4 were studied in [12] and [19]. However, for the purpose of deriving
modular equations, it seems most natural to introduce the complete set of six functions.
The Θ functions may be related to Riemann’s Θ function of zero argument as follows. For
(τ1, τ2) ∈ B, define Ω to be a 3× 3 symmetric matrix with positive definite imaginary part
as

Ω(τ1, τ2) =
1

ω̄ − ω

 2τ1 − τ2
2 (ω − ω̄) τ2 τ1 + ω̄τ2

2

(ω − ω̄) τ2 1− ω̄ (ω − 1)τ2

τ1 + ω̄τ2
2 (ω − 1)τ2 2τ1 − ωτ2

2

 .
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This matrix is calculated in [11, p. 208], where the specific matrix −Ω(−1/v, ωu/v)−1

resulted from their choice of a basis. The Θ functions are then given by,

Θ0(τ1, τ2) = e
125πi
72 c Θ

[
0 1

6 0
0 5

6 0

]
(~0), Θ3(τ1, τ2) = e

125πi
72 c Θ

[
0 1

6 0
2
3

5
6

1
3

]
(~0),

Θ1(τ1, τ2) = e
125πi
72 c Θ

[
1
3

1
6

1
3

0 5
6 0

]
(~0), Θ4(τ1, τ2)= e

125πi
72 c Θ

[
0 1

6 0
1
3

5
6

2
3

]
(~0),

Θ2(τ1, τ2) = e
125πi
72 c Θ

[
2
3

1
6

2
3

0 5
6 0

]
(~0), Θ5(τ1, τ2) = e

31πi
24 c Θ

[
1
3

1
2

1
3

1
3

1
2

2
3

]
(~0),

where

c =
2π

33/8Γ
(

1
3

)3/2 ,

and

(4.1) Θ

[
~a
~b

]
(~z) =

∑
~n∈Z3

eπi(~n+~a)Ω(~n+~a)T+2πi(~z+~b)(~n+~a)T .

The series in Definition 4.1 may be obtained by setting ~n = (x, z, y) in this sum. Since x
and y range over all integers, the quantity µ = x−ω2y ranges over all of Z[ω]. Finally, the
sum on z may be evaluated by the functions T2(u) and T6(u).

The Picard modular group Γ is defined as

Γ = {g ∈ GL3(Z[ω]) | ḡTHg = H}, H =

 0 1 0
1 0 0
0 0 −1

 .

We will need two congruence subgroups of Γ. For any ν ∈ Z[ω], set D = diag(1, νν̄, ν) and

Γ(ν) = {g ∈ Γ | g ≡ I3×3 mod ν},
Γ(
√
−3, ν) = D−1Γ(

√
−3)D ∩ Γ(

√
−3),

where g ≡ I3×3 mod ν means that the entries of g− I3×3 are all divisibe by ν. Any matrix
g = (gij)ij ∈ Γ acts on a point (τ1, τ2) ∈ B via

g : (τ1, τ2) 7→
(
g21 + g22τ1 + g23τ2

g11 + g12τ1 + g13τ2
,
g31 + g32τ1 + g33τ2

g11 + g12τ1 + g13τ2

)
,

and the slash operator |g,k in weight k is defined as

f |g,k(τ1, τ2) =
1

(g11 + g12τ1 + g13τ2)k
f(g(τ1, τ2)).

The map f 7→ f |g,k is referred to as the action of g on f , and the weight of this operator
will always be clear from context.

The congruence subgroup Γ(
√
−3) is important because it is the monodromy group of

(3.1) in the case a = b1 = b2 = 1
3 and c = 1. According to [19, p. 331], we have Γ/Γ(

√
−3) '

S4. Also according to [19, p. 328–332], a list of generators for Γ(
√
−3)/{1, ω, ω2} can be
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given as {g1, g2, g3, g4, g5}, and if this list is augmented by {g6, g7, g8}, then it becomes a
list of generators for Γ, where

g1 =

 1 0 0
0 1 0
0 0 ω

 , g2 =

 1 ω2 − ω 0
0 1 0
0 0 1

 , g3 =

 1 0 0
ω2 − ω 1 0

0 0 1

 ,

g4 =

 1 1− ω 1− ω2

0 1 0
0 1− ω 1

 , g5 =

 1 0 0
1− ω 1 ω2 − 1
ω − 1 0 1

 ,

g6 =

 1 0 0
0 1 0
0 0 −1

 , g7 =

 0 1 0
1 0 0
0 0 −1

 , g8 =

 1 −ω2 −1
0 1 0
0 −1 1

 .

In order to describe the automorphic behavior of the Θ functions under Γ(
√
−3), we

need characters Γ(
√
−3) → {1, ω, ω2} that describe the automorphic factors. For a given

α ∈ Z[ω], let

α mod
√
−3 :=


0, α ≡ 0 mod

√
−3

1, α ≡ 1 mod
√
−3

2, α ≡ 2 mod
√
−3

,

and define eight characters χa : Γ(
√
−3)→ {1, ω, ω2} by

χ0((gij)ij) = exp
2πi

3

(
2 Im(g11g22 − g12g21)√

3

)
,

χd((gij)ij) = exp
2πi

3

(
g11 + g22 + g33

−
√
−3

mod
√
−3

)
,

χkl((gij)ij) = exp
2πi

3

(
gkl

−
√
−3

mod
√
−3

)
for k 6= l.

There are two relations among these characters, χ23χ31 = 1 and χ13χ32 = 1, as can be
verified on the generators g1, g2, g3, g4 and g5 of Γ(

√
−3), and the character χd is the

determinant map.

Lemma 4.2. The action of the generators gi in weight one on each of the Θ functions is
summarized in the following table.

f f |g1 f |g2 f |g3 f |g4 f |g5 f |g6 f |g7 f |g8
Θ0 Θ0 Θ0 Θ0 Θ0 Θ0 Θ0 Θ0 Θ2

Θ1 Θ1 Θ1 ωΘ1 Θ1 ωΘ1 Θ2 Θ3 Θ0

Θ2 Θ2 Θ2 ωΘ2 Θ2 Θ2 Θ1 Θ4 Θ1

Θ3 Θ3 ωΘ3 Θ3 ωΘ3 Θ3 Θ4 Θ1 −ωΘ4

Θ4 Θ4 ωΘ4 Θ4 Θ4 Θ4 Θ3 Θ2 −ωΘ5

Θ5 ωΘ5 ωΘ5 ωΘ5 ω̄Θ5 ω̄Θ5 −Θ5 −Θ5 ωΘ3
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For any g ∈ Γ(
√
−3), the action of the weight one operator |g on each of the Θ functions

is given by
Θ0|g = χ0Θ0, Θ3|g = χ0χ12χ32Θ3,

Θ1|g = χ0χ21χ23Θ1, Θ4|g = χ0χ12χ13Θ4,

Θ2|g = χ0χ21χ31Θ2, Θ5|g = χ0χdχ12χ21Θ5.

Proof. The action of the generators extendes the calculations in Lemma 4.2 of [19]. In
each case we apply the general transformation formula for Θ constants ([15] or [17]). The
remaining relations for any g ∈ Γ(

√
−3) may then be verified on the generators g1, . . . , g5

and ωI3×3. �

We will now give the series expansions of the Θ functions about the point (τ1, τ2) =
(∞, 0), where the local variables

(4.2) q = exp
−2π√

3
τ1, z =

Γ
(

1
3

)3
2
√

3π
τ2

will be used. When the Θ functions are expanded in powers of q in Lemma 4.4, the
coefficients on powers of q are elliptic σ functions corresponding to the equianharmonic
((g2, g3) = (0, 1)) case of the Weierstrass ℘ function. Finis [10] obtained several properties
of these functions, including the result that T2(νu) is a homogenous polynomial in T6(u)
and T6(−u) of degreee νν̄, but for our purposes here, we just need the series exansions of
these functions. Similary, we can expand the Θ functions in powers of z and write down
each coefficient as a function of q. Lemma 4.5 says that the coefficients are essentially
modular forms with respect to the group Γ1(3).

Lemma 4.3. Let ℘(z) = 1
z2

+ z4

28 + · · · be the Weierstrass ℘ function that satisfies ℘′(z)2 =

4℘(z)3−1, and let σ(z) = z− z7

840+· · · be the Weierstrass σ function defined by − d2

dz2
log σ(z) =

℘(z). Then, the series expansions of T2 and T6 are

T2

(
2πz

Γ(1/3)3

)
= σ(z) = z − z7

840
− z13

28828800
+O

(
z19
)

,

T6

(
2πz

Γ(1/3)3

)
= −1

2

(√
3 + ℘′

(
z√
−3

))
σ

(
z√
−3

)3

= 1− iz3

6
+

z6

360
− iz9

45360
+O

(
z12
)

.

Proof. From Equations (31) and (32) of [10], for any µ ∈ Z[ω], the quasi-periodicity rela-
tions,

(4.3)
T2(u+ µ) = e

2π√
3
µ̄(u−ωµ)

T2(u),

T6(u+ µ) = e
2π√
3
µ̄(u−ωµ)

ω̄µ+µ̄T6(u),

hold, and the zero set of T2(u) is Z[ω] while the zero set of T6(u) is Z[ω]−1/
√
−3. Further-

more, the period lattice for the case (g2, g3) = (0, 1) of the Weierstrass ℘ elliptic functions

is Γ(1/3)3

2π Z[ω]. The first equality between T2 and σ is the standard representation of the σ
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function by Jacobian elliptic Θ functions. The transformations in (4.3) and the fact that
the zeros set of T2 is Z[ω] imply that there are constants A and B with

T6(
√
−3u)

T2(u)3
− T6(−

√
−3u)

T2(u)3
= A+B ℘

(
Γ(1/3)3

2π
u

)
,

T6(
√
−3u)

T2(u)3
+
T6(−

√
−3u)

T2(u)3
= C ℘′

(
Γ(1/3)3

2π
u

)
since these are, respectively, even and odd elliptic functions of orders at most three with
respect to the period lattice Z[ω]. Lemma 9 of [10] implies that A = −

√
3 and B = 0, and

the special value T6(0) = 1 gives C = −1. �

Lemma 4.4. Set γ = 2+ω
3 , and q and z as in (4.2). The six Θ functions have the series

expansions

Θ0(τ1, τ2) = 1 +

(
6 +

9z6

20
+ · · ·

)
q +

(
6− 243z6

20
+ · · ·

)
q3 +O

(
q4
)

,

Θ 1
2
(τ1, τ2) =

(
3± z3

2
− z6

120
+ · · ·

)
q

1
3 +

(
3∓ 4z3 − 8z6

15
+ · · ·

)
q

4
3 +O

(
q

7
3

)
,

Θ 3
4
(τ1, τ2) = 1 +

(
−3∓ 9z3

2
− 9z6

40
+ · · ·

)
q +

(
6− 243z6

20
+ · · ·

)
q3 +O

(
q4
)

,

Θ5(τ1, τ2) =

(
3z +

z7

280
+ · · ·

)
q

1
3 +

(
−6z − 16z7

35
+ · · ·

)
q

4
3 +O

(
q

7
3

)
.

Proof. These follow directly from Definition 4.1 and series expansions in Lemma 4.3. �

Lemma 4.5. Set q and z as in (4.2), and set a = a(τ), b = b(τ), c = c(τ) to be the
Borwein cubic Θ functions where q = e2πiτ . We then have

Θ0(τ1, τ2) =
∞∑
k=0

aP 2k
0 z6k = a+

ab3c3

60
z6 −

19ab3c3
(
3a6 − 4b3c3

)
1108800

z12 + · · · ,

Θ 1
2
(τ1, τ2) =

∞∑
k=0

cP k1
2
z3k = c± b3c

6
z3 −

b3c
(
a3 + 2c3

)
360

z6 + · · · ,

Θ 3
4
(τ1, τ2) =

∞∑
k=0

bP k3
4
z3k = b∓ bc3

6
z3 +

bc3
(
2c3 − 3a3

)
360

z6 + · · · ,

Θ5(τ1, τ2) =

∞∑
k=0

bcP 2k
5 z6k+1 = bcz +

bc
(
a6 − 6b3c3

)
840

z7 + · · · ,

where, for each 0 ≤ i ≤ 5,

P ki =
∑

3m+3n=3k

Ci,ma
3mc3n

for some rational coefficients Ci,m.

Proof. For (
a b
3c d

)
∈ Γ1(3),
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consider the element

g =

 d c
√
−3 0

−b
√
−3 a 0

0 0 1

 ∈ Γ(
√
−3).

By Lemma 4.2, we have

Θ0|g = Θ0, Θ3|g = ω−cΘ3,

Θ1|g = ωbΘ1, Θ4|g = ω−cΘ4,

Θ2|g = ωbΘ2, Θ5|g = ωb−cΘ5.

All of the assertions follow from these transformation formulas, since the action of g on the
variables τ and z is

g · (τ, z) =

(
aτ + b

3cτ + d
,

z

3cτ + d

)
,

And this implied that the P ki are modular forms of weight 3k with respect to Γ1(3). Thus,
they are polynomials in a3 and c3.

�

5. Picard Modular Forms and a Proof of Theorem 3.3

In order to prove that the modular equations in Definition 3.1 induce an algebraic re-
lationship between (α1, α2) and (β1, β2), it is necessary to recall some background facts
concerning Picard modular functions. For a subgroup G of Γ, we let G denote the sub-
group of G consisting of matricies from G with determinant 1.

Lemma 5.1 ( p. 349 of [19] ). For the group Γ(
√
−3), we have:

(1) The graded ring of holomorphic modular forms f(τ1, τ2) of weight 3k that satisfy

f |g,3k = f for all g ∈ Γ(
√
−3) is C[ξ0, ξ1, ξ2,∆]/(∆3−ξ0ξ1ξ2(ξ1−ξ0)(ξ0−ξ2)(ξ2−ξ1)),

where

ξ0(τ1, τ2) = Θ3
0,

ξ1(τ1, τ2) = Θ3
1,

ξ2(τ1, τ2) = Θ3
2,

∆(τ1, τ2) = Θ0Θ1Θ2Θ3Θ4Θ5.

(2) The graded ring of holomorphic modular forms f(τ1, τ2) of weight 3k that satisfy
f |g,3k = f for all g ∈ Γ(

√
−3) is C[ξ0, ξ1, ξ2].

(3) The field of weight zero meromorphic modular functions with respect to Γ(
√
−3) is

C(
Θ3

1

Θ3
0
,

Θ3
2

Θ3
0
).

The function ∆ that appears in Lemma 5.1 is a basis for the one-dimensions space of
holomorphic functions f(τ1, τ2) satsifying f |g,6 = det(g)f . Such a basis was given in [10] as

(5.1)

(
ω2 ∂

∂z1
+

∂

∂z3

)6 ∣∣∣
(z1,z2,z2)=0

Θ((z1, z2, z3)),
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where Θ((z1, z2, z3)) is defined in (4.1) with ~a = ~b = 0. It is thus amusing to notice the
equality of these two representations of ∆. The definition given here as the product of all
six Θ functions also seems more natural than (5.1).

Lemma 5.2. We have the following identities.

Θ3(τ1, τ2)3 = Θ0(τ1, τ2)3 −Θ1(τ1, τ2)3,

Θ4(τ1, τ2)3 = Θ0(τ1, τ2)3 −Θ2(τ1, τ2)3,

Θ5(τ1, τ2)3 = Θ1(τ1, τ2)3 −Θ2(τ1, τ2)3,

Θ0(τ1, τ2) = F

(
Θ1(τ1, τ2)3

Θ0(τ1, τ2)3
,
Θ2(τ1, τ2)3

Θ0(τ1, τ2)3

)
for Θ0 ≥ Θ1 ≥ Θ2 ≥ 0,

Proof. The first three follow from Lemma 5.1. Each of the functions Θ3
3, Θ3

4, and Θ3
5 is a

modular form of weight 3 with respect to Γ(
√
−3). They must be linear combinations of

Θ3
0, Θ3

1, and Θ3
2 since these three functions span this space. The coefficients of these linear

combinations may be found with the series expansions in Lemma 4.5. The last identity
is equivalent to Corollary 2.1 in [11], and it must be considered a formal identity because
η0(λ1, λ2) is in general a multi-valued function. On the branch fixed in (3.2), the equality

Θ0 = F

(
Θ3

1

Θ3
0

,
Θ3

2

Θ3
0

)
holds at least when Θ0 ≥ Θ1 ≥ Θ2 ≥ 0. �

Let [qnzm]f(τ1, τ2) (or [zm]f(τ1, τ2)) denote the coefficient of qnzm (or zm) in the expan-
sions of f in the variables (4.2). Thus, for example,

[z6q1]Θ0 =
9

20
,

[z6]Θ0 =
a(q)b3(q)c3(q)

60
.

Lemma 5.3. Set the expansion variables q and z as in (4.2). Suppose that the holomorphic
modular form f(τ1, τ2) of weight 3k satisfies

f |g,3k = f ,

[qnzm](f) = 0.

for all g ∈ Γ(
√
−3) and for all m ≤ 3k and n ≤ k + m/3. In this case, f(τ1, τ2) vanishes

identically.

Proof. This follows from the fact given in Lemma 5.1 which states the space of holomorphic

modular forms with respect to Γ(
√
−3) is C(ξ0, ξ1, ξ2,∆) modulo one relation for ∆3, while

the space of holomorphic modular forms with respect to Γ1(3) is C[a(τ), c(τ)3].
As shown in the proof of Lemma 4.5, the coeffcient [zm](f) is a modular form of weight

m + 3k with respect to Γ1(3). Since a(τ) = 1 + O(q) and c(τ)3 = q + O(q2) generate this
space, it has a basis of the form

{qn +O(q1+bk+m/3c)}bk+m/3c
n=0 .
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If all of the coefficients [qnzm](f) vanish for n ≤ k+m/3, then it must be the case that the
coefficient [zm](f) vanishes as a function of q.

Now write

f = f0 + f1∆ + f2∆2,

where fi is a modular form with respect to Γ(
√
−3) (not just Γ(

√
−3)) of weight 3k − 6i.

The term fi∆
i collects those terms in the (q, z)− expansion of f where the exponent on

z is congruent to i modulo 3. Consider now what is means for [z0](f0) to vanish (that is
f0(τ1, 0) = 0). According to the second part of Lemma 5.1, this means that f0 is divisible
by Θ3

1 −Θ3
2, that is, (Θ3

1 −Θ3
2)−1f0 is a modular form of weight 3k− 3. Continuing in this

fashion, we deduce that (Θ3
1 −Θ3

2)−kf0 is a modular form of weight zero for Γ(
√
−3), that

is, a constant. Since [z3k](f) = 0, this constant must be zero. The forms f1(τ1, τ2) and
f2(τ1, τ2) may be shown to vanish by similar arguments. �

Proposition 5.4 (Catalog of Θ function evaluations). Suppose that m, α1, α2 β1 and β2

are related by a two-variable cubic modular equation of degree ν. We then have the following
table for converting identities among Θ functions to modular equations and vice-versa.

Θ0(τ1, τ2) = z, Θ0(νν̄τ1, ντ2) = z/m

Θ1(τ1, τ2) = α
1/3
1 z, Θ1(νν̄τ1, ντ2) = β

1/3
1 z/m,

Θ2(τ1, τ2) = α
1/3
2 z, Θ2(νν̄τ1, ντ2) = β

1/3
2 z/m,

Θ3(τ1, τ2) = (1− α1)1/3z, Θ3(νν̄τ1, ντ2) = (1− β1)1/3 z/m

Θ4(τ1, τ2) = (1− α2)1/3z, Θ4(νν̄τ1, ντ2) = (1− β2)1/3z/m,

Θ5(τ1, τ2) = (α1 − α2)1/3z, Θ5(νν̄τ1, ντ2) = (β1 − β2)1/3z/m,

where

z = F (α1, α2).

Proof. Set

(5.2) α1 =
Θ1(τ1, τ2)3

Θ0(τ1, τ2)3
, α2 =

Θ2(τ1, τ2)3

Θ0(τ1, τ2)3

and assume that 0 < α2 < α1 < 1. The last equality of Lemma 5.2 states that

(5.3) Θ0(τ1, τ2) = F (α1, α2).

Replacing (τ1, τ2)→ g7(τ1, τ2) in (5.3) gives

(5.4) τ1Θ0(τ1, τ2) = F (1− α1, 1− α2).

Next, replacing (τ1, τ2) → g4g8g6g
2
1(τ1, τ2) and (τ1, τ2) → g−1

8 g6(τ1, τ2) in (5.3) gives, re-
spectively,

(5.5)

−ω(1− ωτ1 + ωτ2)Θ0(τ1, τ2) = (−α1)−1/3F

(
α2

α1
,

1

α1

)
,

−ω(1− ωτ1 − τ2)Θ0(τ1, τ2) = (−α2)−1/3F

(
α1

α2
,

1

α2

)
.
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Care must taken to ensure that the correct branch of the F function is used in (5.5). We
have taken the standard one with the path of integration from 0 to 1 in (3.3) lying just
below the branch cuts of the integrand. Equations (5.3), (5.4), and (5.5) may be combined
to give the following method of inverting (5.2):

(5.6)

τ1 =
F (1− α1, 1− α2)

F (α1, α2)
,

τ2 =
(−α1)−

1
3F
(
α2
α1
, 1
α1

)
− (−α2)−

1
3F
(
α1
α2
, 1
α2

)
F (α1, α2)

.

This agrees with fundamental inversion formula given in [18, p. 131] and [19, p. 327].
All of the conversions in this table follow from this inversion formula, the definition of the
two-variable modular equation, and the identities given in Lemma 5.2. �

Modular equations of degrees ν̄ and −ων are simply related to modular equations of
degree ν, as the next Proposition demonstrates.

Proposition 5.5 (Reciprocation Process). If m, α1, α2 β1 and β2 are related by a two-
variable cubic modular equation of degree ν, then a modular equation of degree ν̄ may be
derived by the substitutions

α1 → 1− β1, α2 → 1− β2,

β1 → 1− α1, β2 → 1− α2,

m→ νν̄

m
,

and a modular equation of degree −ων may be derived with the substitutions

α1 → α1, α2 → α2,

β1 → β2, β2 → β1,

m→ m.

Proof. Let τ1 and τ2 be defined as in Proposition 5.4. We may derive a modular equation
of degree ν̄ by performing the substitution

(τ1, τ2)→
(

1

νν̄τ1
,
−τ2

ντ1

)
.

The effects of this substitution on the Θ functions can be deduced by the entry for g7 in
Lemma 4.2. We may also derive a modular equation of degree −ων by noticing that

Θ0(νν̄τ1,−ωντ2) = Θ0(νν̄τ1, ντ2),

Θ1(νν̄τ1,−ωντ2) = Θ2(νν̄τ1, ντ2),

Θ2(νν̄τ1,−ωντ2) = Θ1(νν̄τ1, ντ2).

Hence, the only effect is to interchange β1 and β2. �

Lemma 5.6. For any ν ∈ Z[ω], Γ(ν) is a normal subgroup of Γ with [Γ : Γ(ν)] ≤ (νν̄)9.
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Proof. The group Γ(α) is the kernel of the map φ : Γ→ GL3(Z[ω]/(ν)), which is obtained
by reducing elements point-wise as

φ : (gij)ij 7→ (gij mod ν)ij .

Thus, |Γ/Γ(ν)| ≤ |GL3(Z[ω]/(ν))| ≤ (νν̄)9. �

Proposition 5.7. The first and second parts of Theorem 3.3 hold.

Proof. By Proposition 5.4, the variables in a two-variable cubic modular equation are pa-
rameterized by (τ1, τ2) ∈ B as

α1 =
Θ1(τ1, τ2)3

Θ0(τ1, τ2)3
, α2 =

Θ2(τ1, τ2)3

Θ0(τ1, τ2)3
,

β1 =
Θ1(νν̄τ1, ντ2)3

Θ0(νν̄τ1, ντ2)3
, β2 =

Θ2(νν̄τ1, ντ2)3

Θ0(νν̄τ1, ντ2)3
,

m =
Θ0(τ1, τ2)

Θ0(νν̄τ1, ατ2)
.

Recall that D was the diagonal matrix diag(1, νν̄, ν). An element X ∈ C(m,α1, α2, β2, β2)
is thus pushed forward to a modular function X(τ1, τ2) with respect to the group

Γ(
√
−3, ν) = (D−1Γ(

√
−3)D) ∩ Γ(

√
−3).

Let us first obtain the bound on the index d(ν). We have,

d(ν) = [Γ(
√
−3) : (D−1Γ(

√
−3)D) ∩ Γ(

√
−3)] ≤ [Γ : Γ(

√
−3)][Γ : (D−1ΓD) ∩ Γ]

≤ [Γ : Γ(
√
−3)][Γ : Γ(νν̄)]

≤ 24(νν̄)18.

Now let Γ(
√
−3) = ∪iΓ(

√
−3, ν)Mi be a decomposition of Γ(

√
−3) into right cosets with

M0 = I. The polynomial f(x) is then

f(x) =
∏
i

(x−X|DMi(τ1, τ2)) .

By the third part of Lemma 5.1, the coefficients of f(x) are rational functions of α1 and
α2. From the factor with i = 0, we see that f(x) has x = X(τ1, τ2) as a root.

The second part of Theorem 3.3 follows from a straightforward calculation. The conju-
gates under the action of Γ(

√
−3) of

β1 =
Θ1(νν̄τ1, ντ2)3

Θ0(νν̄τ1, ντ2)3
, β2 =

Θ2(νν̄τ1, ντ2)3

Θ0(νν̄τ1, ντ2)3
,

which are d(ν) in number, are all distinct in the cases ν =
√
−3 and ν = 2. �

In order to prove the third part of Theorem 3.3, it suffices to obtain a formula for the
functional determinant

∂(τ1, τ2)

∂(α1, α2)

where (τ1, τ2) is related to (α1, α2) by the inversion formula (5.6). This is stated in terms
of Θ functions in the following proposition. It is worth noting that such a determinant
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may be evaluated using a general formula for Wronskins given in Lemma 2.4 of [16], but
we given a short self-contained proof based on the properties of the Θ functions.

Proposition 5.8. ∣∣∣∣∣∣∣
Θ3

0
∂
∂τ1

Θ3
0

∂
∂τ2

Θ3
0

Θ3
1

∂
∂τ1

Θ3
1

∂
∂τ2

Θ3
1

Θ3
2

∂
∂τ1

Θ3
2

∂
∂τ2

Θ3
2

∣∣∣∣∣∣∣ = Γ

(
1

3

)3

Θ2
0Θ2

1Θ2
2Θ2

3Θ2
4Θ2

5

Proof. Let f(τ1, τ2) = Θ9
0
∂(Θ3

1/Θ
3
0,Θ

3
2/Θ

3
0)

∂(τ1,τ2) denote the functional determinant on the left hand

side. Since we then have det(g)f |g,12 = f for all g ∈ Γ(
√
−3), the first part (but not the

second part) of Lemma 5.1 applies. With this functional equation applied to g = g1, we
can observe that f(τ1, ωτ2) = ω2f(τ1, τ2), hence f must contain only powers of z of the
form z3n+2 and thus must be a constant multiple of ∆2 = Θ2

0Θ2
1Θ2

2Θ2
3Θ2

4Θ2
5 since it has

weight 12. Using the series expansion in Lemmas 4.4 or 4.5, this constant is found to be

Γ
(

1
3

)3
. �

Using the catalogue of evaluations in Proposition 5.4, we have

ν2ν̄
∂(α1, α2)

∂(β1, β2)
=
∂(α1, α2)

∂(τ1, τ2)
/

∂(β1, β2)

∂(νν̄τ1, ντ2)

=
Θ0(τ1, τ2)−7Θ1(τ1, τ2)2Θ2(τ1, τ2)2Θ3(τ1, τ2)2Θ4(τ1, τ2)2Θ5(τ1, τ2)2

Θ0(νν̄τ1, ντ2)−7Θ1(νν̄τ1, ντ2)2Θ2(νν̄τ1, ντ2)2Θ3(νν̄τ1, ντ2)2Θ4(νν̄τ1, ντ2)2Θ5(νν̄τ1, ντ2)2

= m3α
2/3
1 (1− α1)2/3 α

2/3
2 (1− α2)2/3 (α1 − α2)2/3

β
2/3
1 (1− β1)2/3 β

2/3
2 (1− β2)2/3 (β1 − β2)2/3

,

and so the third part of Theorem 3.3 is clear.

6. Proofs of the two-variable modular equations via theta functions

The goal of this section is to state and prove identities of Θ functions and then transfer
them into modular equations via the catalog of evaluations in Proposition 5.4.

Theorem 6.1. The following Θ function identities of degree 1 + 2ω =
√
−3 hold.

3Θ0(3τ1, (1 + 2ω)τ2) = Θ0(τ1, τ2)+ Θ3(τ1, τ2)+ Θ4(τ1, τ2),

3Θ1(3τ1, (1 + 2ω)τ2) = Θ0(τ1, τ2)+ωΘ3(τ1, τ2)+ω̄Θ4(τ1, τ2),

3Θ2(3τ1, (1 + 2ω)τ2) = Θ0(τ1, τ2)+ω̄Θ3(τ1, τ2)+ωΘ4(τ1, τ2).

Proof. For i = 0, 1, 2, by the series expansions in Lemma 4.4, we have

Θ0(τ1, τ2) + ωiΘ3(τ1, τ2) + ω̄iΘ4(τ1, τ2)

=
∑
µ∈Z[ω]

(1 + ωi+µ+µ̄ + ω̄i+µ+µ̄)qµµ̄T2(µτ2)

= 3
∑
µ∈Z[ω]

i+µ+µ̄≡0 (mod 3)

qµµ̄T2(µτ2).
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The condition i+ µ+ µ̄ ≡ 0 (mod 3) is satisfied exactly by the substitution µ→
√
−3(µ+

iω−1
3 ) where the new value of µ ranges over all of Z[ω]. Hence,

Θ0(τ1, τ2) + ωiΘ3(τ1, τ2) + ω̄iΘ4(τ1, τ2)

= 3
∑

µ∈Z[ω]+iω−1
3

q3µµ̄T2(
√
−3µτ2)

= 3Θi(3τ1, (1 + 2ω)τ2).

�

Proof of Theorem 3.4. Applying Proposition 5.4 to the three equalities in Theorem 6.1 gives

3m−1 = 1+ (1− α1)1/3+ (1− α2)1/3,

3m−1β
1/3
1 = 1+ω(1− α1)1/3+ω̄(1− α2)1/3,

3m−1β
1/3
2 = 1+ω̄(1− α1)1/3+ω(1− α2)1/3.

Applying the first reciprocation process in Proposition 5.5 once and the second reciprocation
process three times, we deduce that

m = 1+ β
1/3
2 + β

1/3
1 ,

m (1− α1)1/3 = 1+ωβ
1/3
2 +ω̄β

1/3
1 ,

m (1− α2)1/3 = 1+ω̄β
1/3
2 +ωβ

1/3
1 ,

are also modular equations of degree
√
−3. The parameterizations in Theorem 3.4 are easily

seen to be equivalent to these three relations. �

Theorem 6.2. The following Θ function identities of degree 2 hold.

{Θ0(τ1, τ2)−Θ0(4τ1, 2τ2)}Θ5(τ1, τ2) = + {4Θ0(4τ1, 2τ2)−Θ0(τ1, τ2)}Θ5(4τ1, 2τ2),

{Θ2(τ1, τ2)−Θ1(4τ1, 2τ2)}Θ3(τ1, τ2) = −{4Θ1(4τ1, 2τ2)−Θ2(τ1, τ2)}Θ4(4τ1, 2τ2),

{Θ1(τ1, τ2)−Θ2(4τ1, 2τ2)}Θ4(τ1, τ2) = −{4Θ2(4τ1, 2τ2)−Θ1(τ1, τ2)}Θ3(4τ1, 2τ2).

Before commencing with the proof of these identities, we would like to give an indication
of how they were discovered. We can observe with the help of Lemma 4.2 that the six
functions

x0 =
Θ0(τ1, τ2)

Θ0(4τ1, 2τ2)
, x1 =

Θ1(τ1, τ2)

Θ2(4τ1, 2τ2)
, x2 =

Θ2(τ1, τ2)

Θ1(4τ1, 2τ2)
,

x3 =
Θ3(τ1, τ2)

Θ4(4τ1, 2τ2)
, x4 =

Θ4(τ1, τ2)

Θ3(4τ1, 2τ2)
, x5 =

Θ5(τ1, τ2)

Θ5(4τ1, 2τ2)

are invariant under Γ(
√
−3, 2). One can observe numerically that simple identities such as

(x5 + 1)(x0 − 1) = 3

seem to hold, and this identity is equivalent to the first identity of Theorem 6.2.
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Proof. We will prove only the first one, as the remaining two may be proven by identical
methods. We wish to show that f(τ1, τ2) vanishes identically where

f(τ1, τ2) = {Θ0(τ1, τ2)−Θ0(4τ1, 2τ2)}Θ5(τ1, τ2)−{4Θ0(4τ1, 2τ2)−Θ0(τ1, τ2)}Θ5(4τ1, 2τ2).

By Lemma 4.2, we can calculate that, for all g ∈ Γ(
√
−3, 2),

f |g,2 = χ0(g)2χ12(g)χ21(g)χd(g)f .

If Γ(
√
−3) = ∪18

i=1Γ(
√
−3, 2)Mi is a decomposition of Γ(

√
−3) into right cosets, let

F (τ1, τ2) =
18∏
i=1

f |Mi,2.

We have F |g,36 = F for all g ∈ Γ(
√
−3). If the condition

(6.1) [qnzm](f) = 0

of Lemma 5.3 holds for f(τ1, τ2) for all m ≤ 3k and n ≤ k + m/3, then it also holds for
F (τ1, τ2) since the other factors in the product are holomorphic. The requied coefficients
in (6.1) (for k = 12) do indeed vanish, so F (τ1, τ2) vanishes identically by Lemma 5.3. This
means that f(τ1, τ2) must also vanish identically. �

Proof of Theorem 3.5. Let us introduce parameters x and y defined by

(6.2) m

(
1− α1

1− β2

)1/3

= 1− x, m

(
1− α2

1− β1

)1/3

= 1− y.

The last two equations in Theorem 6.2, when transfered using Proposition 5.4 and the
definitions of x and y, become

(6.3) m

(
α2

β1

)1/3

= 1 +
3

x
, m

(
α1

β2

)1/3

= 1 +
3

y
.

The first equation in Theorem 6.2 directly becomes

(6.4) m

(
α1 − α2

β1 − β2

)1/3

=
3

m− 1
− 1.

We first solve (6.3) for β1 and β2 in terms of m, x, y, α1 and α2. We then substitute this
solution for (β1, β2) into (6.2) and solve the resulting linear equations for (α1, α2) in terms
of m, x, and y alone. The resulting solutions for (α1, α2) (and thus (β1, β2)) are

α1 =
(y + 3)3

(
m3 + (x− 1)3

)
m3 (x (x2 − 3x+ 3) y3 + 9y2 + 27y + 27)

,

α2 =
(x+ 3)3

(
m3 + (y − 1)3

)
m3 (x3y (y2 − 3y + 3) + 9x2 + 27x+ 27)

,

β1 =
x3
(
m3 + (y − 1)3

)
x3y (y2 − 3y + 3) + 9x2 + 27x+ 27

,

β2 =
y3
(
m3 + (x− 1)3

)
x (x2 − 3x+ 3) y3 + 9y2 + 27y + 27

.
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When these solutions are substituted into (6.4), we can solve for m in terms of x and y
alone, and then obtain (α1, α2) and (β1, β2) in terms of x and y alone by substituting the
obtained solution for m. When (6.4) is converted to an equation involving only m, x and
y, there are six solutions for m given by

1− x, x+ 3

x
, 1− y, y + 3

y
,

xy + x+ y − 3

x+ y
,

xy − 3x− 3y − 3

xy − 3
.

On account of the third part of Theorem 3.3, only the last one is correct. �

7. Applications: generators and a two parameter solvable nonic

In this section we will apply the modular equations of degree
√
−3 and 2 to deduce

two consequences. First, we will deduce the structure of modular functions with respect
to Γ(

√
−3,
√
−3) and Γ(

√
−3, 2). This result should be compared with Shiga’s result in

the third part of Lemma 5.1, which gives the field of modular functions with respect to
Γ(
√
−3). Second, we will show that the modular equation of degree 2 can be used to produce

a two-parameter family of nonic equations whose Galois group is the Hessian group.

Theorem 7.1. For the groups Γ(
√
−3,
√
−3) and Γ(

√
−3, 2), we have

(1) The field of modular functions with respect to Γ(
√
−3,
√
−3) is

C
(

Θ3(τ1, τ2)

Θ0(τ1, τ2)
,
Θ4(τ1, τ2)

Θ0(τ1, τ2)

)
= C

(
Θ1(3τ1,

√
−3τ2)

Θ0(3τ1,
√
−3τ2)

,
Θ2(3τ1,

√
−3τ2)

Θ0(3τ1,
√
−3τ2)

)
.

(2) The field of modular functions with respect to Γ(
√
−3, 2) is

C
(

Θ3(τ1, τ2)

Θ4(4τ1, 2τ2)
,

Θ4(τ1, τ2)

Θ3(4τ1, 2τ2)

)
= C

(
Θ2(τ1, τ2)

Θ1(4τ1, 2τ2)
,

Θ1(τ1, τ2)

Θ2(4τ1, 2τ2)

)
Proof. First, each quotient of Θ functions is invariant under the corresponding Γ(

√
−3, ν)

by Lemma 4.2. Set α1, α2, β1 and β2 as in Proposition 5.4. For each of the degrees ν =
√
−3

and ν = 2, the function β1 (or β2) has exactly d(ν) distinct conjugates under the action
of Γ(

√
−3) (the polynomial f(X) for the element x = β1 in Theorem 3.3 does not have

repeated roots). Since the modular equation for these degrees was rationally parameterized
by some functions x and y, if we can demonstrate that x and y can be expressed as rational
functions of the displayed quotients of Θ functions, it will follow that they generate the
whole field. By the parameterizations of the Θ functions in Proposition 5.4, we have, for
(1), where x and y are the parameters from Theorem 3.4,

Θ3(τ1, τ2)

Θ0(τ1, τ2)
=

1 + ω̄x+ ωy

1 + x+ y
,

Θ3(τ1, τ2)

Θ0(τ1, τ2)
=

1 + ωx+ ω̄y

1 + x+ y
,

and
Θ1(3τ1,

√
−3τ2)

Θ0(3τ1,
√
−3τ2)

= x,
Θ2(3τ1,

√
−3τ2)

Θ0(3τ1,
√
−3τ2)

= y,

and for (2), where x and y are the parameters from Theorem 3.5,

Θ3(τ1, τ2)

Θ4(4τ1, 2τ2)
= 1− x,

Θ4(τ1, τ2)

Θ3(4τ1, 2τ2)
= 1− y,
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and
Θ2(τ1, τ2)

Θ1(4τ1, 2τ2)
= 1 +

3

x
,

Θ1(τ1, τ2)

Θ2(4τ1, 2τ2)
= 1 +

3

y
.

Since in each case the pair of equations can be solved for x and y rationally in terms of the
corresponding Θ function quotients, the proof is complete. �

The main result of this section is Theorem 7.2, which will be derived by a series of lemmas
and propositions. This section culminates in Theorem 7.6, where Theorem 7.2 is proven
and an explicit solution is given in radicals.

Theorem 7.2. The Galois group of the splitting field of

X9 − 3X8 + 4tX6 − 6sX5 − 6sX4 + 4stX3 − 3s2X + s2 = 0.

over the base field C(s, t) is the Hessian group of order 216. If the base field does not contain
the cube roots of unity, for example Q(s, t), then the Galois group has order 432.

Lemma 7.3. The group Γ(
√
−3, 2) is an index 18 subgroup of Γ(

√
−3). A coset decompo-

sition is given by Γ(
√
−3) = ∪iΓ(

√
−3, 2)M±i where M1 = I,

M−i =

 1 2
√
−3 0

0 1 0
0 0 1

M+
i ,

and

M2 =

 1 −2ω − 1 0
0 1 0
0 0 1

 , M3 =

 −3ω − 2 −2ω − 1 −3ω − 3
1− ω 1 1− ω
ω − 1 0 ω

 ,

M4 =

 −3ω − 2 −2ω − 1 3
1− ω 1 2ω + 1
ω − 1 0 −ω − 1

 , M5 =

 1 −3ω ω + 2
0 1 0
0 1− ω 1



M6 =

 −2 −2ω − 1 0
−2ω − 1 1 0

0 0 1

 , M7 =

 −3ω − 5 −2ω − 1 −3ω − 3
−3ω 1 1− ω
ω − 1 0 ω

 ,

M8 =

 −3ω − 2 −2ω − 1 3ω
1− ω 1 −ω − 2
ω − 1 0 1

 , M9 =

 −3ω − 5 −2ω − 1 3ω
−3ω 1 −ω − 2
ω − 1 0 1

 .

Under the action of Γ(
√
−3) the cosets pairs are permuted according a group of order 216.

The action of the generators is given in the following table.

M±1 M±2 M±3 M±4 M±5 M±6 M±7 M±8 M±9

g1 M±1 M±2 M±4 M±8 M∓9 M±6 M∓5 M±3 M±7
g2 M±2 M∓1 M±5 M∓9 M∓3 M±6 M±8 M∓7 M±4
g3 M±1 M±6 M±7 M∓5 M±4 M∓2 M∓3 M±9 M∓8
g4 M±3 M±5 M∓2 M∓7 M±1 M±6 M±9 M±4 M±8
g5 M±1 M±8 M∓5 M±3 M∓7 M±9 M∓4 M∓6 M±2
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Proof. The 18 cosets follow from a straightforward calculation. This action of Γ(
√
−3) on

the 9 pairs of right cosets defines a homomorphism ρ : Γ(
√
−3)→ S9 (S9 is the permutation

group on 9 objects). The image in S9 has the normal series

im(ρ) = G216 D G72 D G18 D G9 D G1 = 1,

as we will proceed to show. In the remaining proof of this lemma let gi denote the image
of gi under ρ (e.g. g1 = (348)(597)). Since g2 = g2

4 and g3 = g2
5, the image of ρ is generated

by g1, g4, and g5. Define the groups Gi (of claimed order i) as

G9 = 〈g2
4g

2
5, g

2
4g5g4〉 = 〈(126)(384)(597), (137)(285)(496)〉

G18 = 〈g2
4, g

2
5, g5g4〉

G72 = 〈g2
4, g

2
5, g5g4, g5, g1g5g

−1
1 〉

That Gi does indeed have the claimed order i follows from the following computations
involving the factor groups.

G9 ' Z3 × Z3,

G18/G9 = {G9, g
2
4G9} ' Z2,

G72/G18 = {G18, g5G18, g1g5g
−1
1 G18, g

−1
1 g4g1G18} ' Z2 × Z2,

G216/G72 = {G72, g1G72, g
2
1G72} ' Z3.

�

We now give the fundamental identities of Θ functions that are responsible for ‘pairing
up’ the pairs of cosets in Lemma 4.2. This allows for an easy reduction of the degree of the
modular equation from 18 to nine.

Proposition 7.4. If f±(4τ1, 2τ2) denotes f |DM±1 (τ1, τ2) where D is the diagonal matrix

diag(1, 4, 2), then

(7.1)

Θ+
0 (4τ1, 2τ2)+ Θ−0 (4τ1, 2τ2) = Θ0(τ1, τ2)/2,

Θ+
1 (4τ1, 2τ2)+ Θ−1 (4τ1, 2τ2) = Θ2(τ1, τ2)/2,

Θ+
2 (4τ1, 2τ2)+ Θ−2 (4τ1, 2τ2) = Θ1(τ1, τ2)/2,

Θ+
3 (4τ1, 2τ2)+ωΘ−3 (4τ1, 2τ2) = Θ4(τ1, τ2)/2,

Θ+
4 (4τ1, 2τ2)+ωΘ−4 (4τ1, 2τ2) = Θ3(τ1, τ2)/2,

Θ+
5 (4τ1, 2τ2)+ωΘ−5 (4τ1, 2τ2) = −Θ5(τ1, τ2)/2.

Proof. We will only prove the first identity, as the remaining five may be proven similarly.
By performing the substitution (τ1, τ2) → (1/(4τ1),−τ2/(2τ1)) and using the fact that
Θ0|g7 = Θ0, this identity can be brought into the equivalent form

Θ0(τ1, τ2) + Θ0(τ −
√
−3/2, τ2) = 2Θ0(4τ1, 2τ2).
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From Lemma 4.4, where q = e
−2π√

3
τ1 ,

Θ0(τ1, τ2) + Θ0(τ1 −
√
−3/2, τ2) =

∑
µ∈Z[ω]

qµµ̄T6(µτ2) +
∑
µ∈Z[ω]

(−1)µµ̄qµµ̄T6(µτ2)

=
∑
µ∈Z[ω]

(1 + (−1)µµ̄)qµµ̄T6(µτ2)

= 2
∑

µ∈Z[ω],
µµ̄∈2Z

qµµ̄T6(µτ2)

= 2
∑
µ∈Z[ω]

q4µµ̄T6(2µτ2)

= 2Θ0(4τ1, 2τ2),

since µµ̄ is even if and only if µ ∈ 2Z[ω]. �

The function

X(τ1, τ2) =
4

3

(
Θ+

0 (4τ1, 2τ2)

Θ0(τ1, τ2)
− Θ−0 (4τ1, 2τ2)

Θ0(τ1, τ2)

)2

is clearly invariant under the action ofM−1 . It is also invariant under Γ(
√
−3) by Lemma 4.2.

This means that it has only nine conjugates under the action of Γ(
√
−3), hence it should

satisfy a polynomial of degree 9 with coefficients that are rational in the two functions

α1 =
Θ1(τ1, τ2)3

Θ0(τ1, τ2)3
, α2 =

Θ2(τ1, τ2)3

Θ0(τ1, τ2)3
,

by Lemma 5.1. In Table (7.2) and Table (7.3), we set xi = X(M+
i (τ1, τ2)) as the nine roots

of our nonic and build a sequence of modular functions that can be used to solve for the
xi eventually in terms of radicals of α1 and α2. Since g1, g4, and g5 generate the action of
Γ(
√
−3) on the nine pairs of cosets given in Lemma 4.2, the action of these generators on

the modular functions is also given.

(7.2)
elements g1 action g4 action g5 action

xi = X(M+
i (τ1, τ2)) (348)(597) (1325)(4798) (2869)(3574)

3ri,j = x1 + ωjx2 + ω2jx6

+ωi(x3 + ωjx8 + ω2jx4)
+ω2i(x7 + ωjx5 + ω2jx9)

ri,j → ri+j,j ri,j → ωj−iri−j,−i−j ri,j → ri−j,−i−j

z1 = r2,0r2,1r2,2

z2 = r0,1r1,1r2,1

z3 = r0,2r1,1r2,0

z4 = r0,1r1,2r2,0

zī = g2
4zi

(z1z4z3)(z1̄z4̄z3̄) (z1z4̄z1̄z4)(z2z3̄z3̄z2) same as g4
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We also need another set of functions defined from the ri,j in Table (7.2). These functions
will be necessary in finding in the quartic subfield of the spliting field of the nonic.

(7.3)

elements g1 action g4 action g5 action

y1 = r0,1r0,2 − 1
y2 = r1,0r2,0 − 1
y3 = r1,2r2,1 − 1
y4 = r1,1r2,2 − 1

(y1y4y3) (y1y4)(y2y3) same as g4

4w1 = +y1 − y2 − y3 + y4

4w2 = −y1 − y2 + y3 + y4

4w3 = −y1 + y2 − y3 + y4

w1 → +w2

w2 → −w3

w3 → −w1

w1 → +w1

w2 → −w2

w3 → −w3

same as g4

u1 = w2w3/w1

u2 = w3w1/w2

u3 = w1w2/w3

(u1u2u3) identity identity

Owing to the fact that Θ0 is fixed by g6 and g7, it turns out that the xi are permuted by
g6 and g7 as well as Γ(

√
−3). This means that the coefficient field of the nonic satisfied by

the xi can be restricted to those functions that are invariant under not only Γ(
√
−3), but

also g6 and g7. The reason for this simplification is partly due to the fact that the group
G = diag(1, 4, 2)−1Γ diag(1, 4, 2) has index 18 in Γ (and Γ(

√
−3, 2) is the intersection of

G and Γ(
√
−3)). This may be verified either by a direct enumeration, or by showing that

Γ = Γ(
√
−3)G, that is, each of the 24 equivalence classes in Γ(1)/Γ(

√
−3) are covered by

some element of G. Thus, we have the same coset decomposition Γ = ∪iGM±i . The action
of g6, g7, and g8 on these cosets is summarized in the following table.

M±1 M±2 M±3 M±4 M±5 M±6 M±7 M±8 M±9

g6 M±1 M±2 M∓3 M∓4 M∓5 M±6 M∓7 M∓8 M∓9
g7 M∓6 M±2 M∓9 M∓7 M±8 M∓1 M∓4 M±5 M∓3
g8 M±8 M∓7 M∓9 M∓3 M∓4 M±6 M±1 M±2 M±5

We must then verify that the functions xi(τ1, τ2) = X(M+
i (τ1, τ2)) are permuted accordingly

by g6 and g7, which entails tediously checking the cube roots of unity in the automorphic
factors to ensure that each is unity.

Lemma 7.5. Set α1 = Θ1(τ1, τ2)3/Θ0(τ1, τ2)3, and α2 = Θ2(τ1, τ2)3/Θ0(τ1, τ2)3. The
subfield of C(α1, α2) of functions that are also invariant under g6 and g7 is C(s, t) where

s = (α1 − α2)2, t = 2(α1 + α2 − 2α1α2).

Proof. Let F denote the required subfield of C(α1, α2). By Lemma 4.2, the action of g6

and g7 on α1 and α2 is given by

g6(α1) = α2, g6(α2) = α1, g7(α1) = 1− α1, g7(α2) = 1− α2,

hence Gal(C(α1, α2)/F ) ' Z2×Z2. Since [C(α1, α2) : C(s, t)] = 4 by the defining equations
for s and t, the equality F = C(s, t) holds. �
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By the first identity of Proposition 7.4, the function X(τ1, τ2) can be rewritten as

X(τ1, τ2) =
4

3

(
2

Θ0(4τ1, 2τ2)

Θ0(τ1, τ2)
− 1

2

)2

=
1

3

(
4

m
− 1

)2

,

where m is the multiplier of the associated modular equation of degree ν = 2. The polyno-
mial equation satisfied by X is found to be

(7.4) X9 − 3X8 + 4tX6 − 6sX5 − 6sX4 + 4stX3 − 3s2X + s2 = 0.

In order to compute this equation, we note that the coefficient of X9−i must be a polynomial
in s and t of total degree no more than i/3. One can form such an equation as (7.4) with
the coefficient of X9−i as polynomials in s and t of total degree bi/3c with undetermined
coefficients. Since s, t and X are given rationally in terms of x and y in Theorem 3.5, the
undetermined coefficients may be found by specializing (x, y) to rational pairs and solving
the resulting linear system.

In the calculations for explicitly solving (7.4), we will need the series expansions of the
roots. This allows certain combinations of the roots to be identified as polynomials in s
and t. There are three roots that can be expanded in an ordinary power series at s = 0,
namely,

R3(r) := r +
6r2 + 6r − 4t

3r2(3r3 − 8r2 + 8t)
s+O

(
s2
)

,

where r is any of the three roots of r3− 3r2 + 4t = 0. The other six roots can be expanded
in an Pisuex series at s = 0 as

R6(p) := ps1/3 +
1

4pt
s2/3 +

(2p3t+ 1)

8t2(2p3 + 1)
s+O

(
s4/3

)
,

where p is any of the six roots of 4tp6 + 4tp3 + 1 = 0. Consider the behavior of the roots
in the neighborhood of (s, t) = (0, 1) with s > 0 and t < 1. There are three real roots and
three pairs of complex conjugate roots. From the ordering of the cosets in the definition of
the functions xi(τ1, τ2), we have the ordering of the roots

x1 = R3

(
2− 2

√
1− t√
3

+ · · ·
)

, x2 = R3 (−1 + · · · ) , x6 = R3

(
2 +

2
√

1− t√
3

+ · · ·
)

,

x3= R6

(
−3 +

√
t− 1

3 3
√

2
+ · · ·

)
, x4 = R6

(
−3 +

√
t− 1

3ω 3
√

2
+ · · ·

)
, x8= R6

(
−3 +

√
t− 1

3ω̄ 3
√

2
+ · · ·

)
,

x9= R6

(
−3−

√
t− 1

3 3
√

2
+ · · ·

)
, x5 = R6

(
−3−

√
t− 1

3ω̄ 3
√

2
+ · · ·

)
, x7= R6

(
−3−

√
t− 1

3ω 3
√

2
+ · · ·

)
,

where the expansions of r and p, which are the roots of r3−3r2+4t = 0 and 4tp6+4tp3+1 =
0, have been given to order O(1 − t). For the remainder of this section, let the groups Gi
(for i = 9, 18, 72 and 216) be the groups that were defined in the proof of Lemma 4.2.
Since there are an odd number of complex roots when (s, t) is close to (0, 1), in order to
compute the Galois group of (7.4) over Q(s, t), we should introduce another group G432

that is generated by G216 and (39)(45)(78), since this is the permutation that interchanges
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the complex roots. The labels of these groups in [7] are given in the following table. Of
course, the generators we have given here differ from those given in [7].

group notation of [7] parity

G9 E(9) +
G18 S(3)[1

2 ]S(3) = E(9) : 2 +
G72 E(9) : Q8 +
G216 E(9) : 2A4 +
G432 E(9) : 2S4 −

Theorem 7.6. Let F denote the splitting field of (7.4). We have Gal(F/C(s, t)) ' G216

and Gal(F/Q(s, t)) ' G432, and an explicit construction of the roots of (7.4) in terms of
radicals may be given as follows. In each step we adjoin radicals according to the normal
series

G432 D G216 D G72 D G18 D G9 D 1.

Z2 ' G432/G216. For the first step in solving (7.4), we fix a cube roots of unity ω and
determine

√
−3 = ω − ω2. This step is omitted if the base field contains cube roots

of unity.
Z3 ' G216/G72. Next, we fix a cube root of 2s2(t2 − 4s) and determine the elements

u1, u2, u3 by

ui =
st

2s+ ωi 3
√

2s2(t2 − 4s)
.

Z2 × Z2 ' G72/G18. Next, we fix square roots of u1, u2, u3 and determine elements y1, y2, y3, y4

by

y 1
2

= −
√
u1
√
u2 ∓

√
u2
√
u3 ±

√
u3
√
u1,

y 3
4

= +
√
u1
√
u2 ∓

√
u2
√
u3 ∓

√
u3
√
u1.

Z2 ' G18/G9. Next, we determine elements z1, z1̄, . . . , z4, z4̄ determined by the four
equalities E1, E2, E3, E4 and six equalities E2,1,3,4, E3,4,2,1, E1,3,2,4, E2,4,1,3, E4,1,2,3, E2,3,4,1,
where Ea and Ea,b,c,d denote the equalities

Ea : za + zā = 2− 4t− 7ya + s−1y3
a,

Ea,b,c,d : (za − zā)(zb − zb̄) = (st)−1(1 + s− t)(ya + yb)
(
3s(yc − yd) +

√
−3ycyd(ya − yb)

)
.

Once z1 − z1̄ is determined, for example, by fixing the square root

z1 − z1̄ =

√
z1 − z1̄ · z2 − z2̄

√
z1 − z1̄ · z3 − z3̄√

z2 − z2̄ · z3 − z3̄

,

the elements z1, z1̄, . . . , z4, z4̄ are then uniquely determined.
Z3 × Z3 ' G9/1. Finally, we fix cube roots of the elements z1, z1̄, . . . , z4, z4̄ subject to the

constraint

(7.5) 3
√
z1

3
√
z2

3
√
z3

3
√
z4

3
√
z1̄

3
√
z2̄

3
√
z3̄

3
√
z4̄ = 1− 6s− 3s2 + 4st.
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A root x of the equation (7.4), is then given by

(7.6)

3x = 1 +
3
√
z2

3
√
z4 3
√
z3̄

3
√
z1 3
√
z1̄

+
3
√
z3 3
√
z2̄

3
√
z4̄

3
√
z1 3
√
z1̄

+
3
√
z1̄

3
√
z3̄

3
√
z4̄

3
√
z2 3
√
z2̄

+
3
√
z2

3
√
z3 3
√
z1̄

3
√
z4 3
√
z4̄

+
3
√
z4 3
√
z1̄

3
√
z2̄

3
√
z3 3
√
z3̄

+
3
√
z1

3
√
z3

3
√
z4

3
√
z2 3
√
z2̄

+
3
√
z1

3
√
z2 3
√
z4̄

3
√
z3 3
√
z3̄

+
3
√
z1 3
√
z2̄

3
√
z3̄

3
√
z4 3
√
z4̄

.

Remark 7.7. Ignoring the difficult issue of how to choose the 3
√
Rij correctly, we may give

the roots of (7.4) as

3x = 1 + 3
√
R01 + 3

√
R02 + 3

√
R10 + 3

√
R11 + 3

√
R12 + 3

√
R20 + 3

√
R21 + 3

√
R22,

where the Rij are the eight roots of R2 − (2 + 3y − s−1y3)R+ (1 + y)3 = 0, where y is any
of the roots of y4 − 6sy2 − 4sty − 3s2 = 0 (or any of the yi constructed above).

Proof. We first prove that Gal(F/C(s, t)) = G216 and Gal(F/Q(s, t)) = G432. Since Γ(
√
−3)

acts on the nine roots by permuting them according to G216 (by Lemma 4.2), we clearly
have Gal(F/C(s, t)),Gal(F/Q(s, t)) ⊇ G216. Next, we have

x1x4x5 + x3x6x5 + x2x8x5 + x7x9x5 + x1x2x6 + x1x3x7

+x2x4x7 + x3x4x8 + x6x7x8 + x2x3x9 + x4x6x9 + x1x8x9

= −4t,

and the sabilizer in S9 of the element on the left is exactly G432 (over Q(s, t) this element
is distinct from all of its 839 = 9!/432− 1 conjugates in S9). Since the element on the right
is in Q(s, t), we must have

G432 ⊇ Gal(F/C(s, t)),Gal(F/Q(s, t)) ⊇ G216.

Finally, the square root of the discriminant of (7.4) is∏
i<j

(xi − xj) = 21234s5(1 + s− t)2(t2 − 4s)2
√
−3,

which implies that Gal(F/C(s, t)) = G216 and Gal(F/Q(s, t)) = G432 since G216 consists
entirely of even permutations and G432 does not.

For the first step in the solution by radicals, we note that the elements u1, u2, u3 are
permuted by G216 and are roots of a cubic over C(s, t). The three displayed solutions are
ordered so that G216 acts by cycling the u1, u2, u3 according to (u1u2u3), as required in
Table (7.3). The solutions for y1, y2, y3, y4 follow by inverting the equations in Table (7.3).
The effect of these first two steps is to ensure that the y1, y2, y3, y4 are ordered so that

∆ :=
∏
i<j

(yi − yj) = 48s2(t2 − 4s)
√
−3.



CUBIC MODULAR EQUATIONS IN TWO VARIABLES 29

The zi will be found in two steps. First, for some ci ∈ C(s, t), we have

z1 + z1̄ = c0 + c1y1 + c2y
2
1 + c3y

3
1,

z2 + z2̄ = c0 + c1y2 + c2y
2
2 + c3y

3
2,

z3 + z3̄ = c0 + c1y3 + c2y
2
3 + c3y

3
3,

z4 + z4̄ = c0 + c1y4 + c2y
2
4 + c3y

3
4,

since the zi + zī and the yi are permuted identically under G216. The ci may be found be
observing that the ∆ci are polynomials in s and t; the results are given in the equalities
Ea. By the same reasoning and setting δi = zi − zī, we have

(7.7)

(δ1δ2 + δ3δ4)/(y2y3 − y1y4) = a0 + a1 (y1y3 + y2y4) + a2 (y1y3 + y2y4) 2,

(δ2δ3 + δ1δ4)/(y2y4 − y1y3) = a0 + a1 (y1y2 + y3y4) + a2 (y1y2 + y3y4) 2,

(δ1δ3 + δ2δ4)/(y1y2 − y3y4) = a0 + a1 (y2y3 + y1y4) + a2 (y2y3 + y1y4) 2,

(δ1δ3 − δ2δ4)/(y2y3 − y1y4) = b0 + b1 (y1y2 + y3y4) + b2 (y1y2 + y3y4) 2,

(δ1δ2 − δ3δ4)/(y1y3 − y2y4) = b0 + b1 (y2y3 + y1y4) + b2 (y2y3 + y1y4) 2,

(δ1δ4 − δ2δ3)/(y1y2 − y3y4) = b0 + b1 (y1y3 + y2y4) + b2 (y1y3 + y2y4) 2,

for some ai, bi ∈ C(s, t). The Vandermonde determinant on the right hand side of the
equations for the ai or bi is precisely ∆. Since y1y3 − y2y4 = 4u1

√
u2
√
u3 with similar

equations for the other denominators in (7.7), we must have that 2u1u2u3∆ai = st∆ai is a
polynomial in s and t (likewise for the bi). These elements can be calculated as

a0 = 6t−1(1 + s− t), a1 = +
√
−3(st)−1(1 + s− t), a2 = 0

b0 = 6t−1(1 + s− t), b1 = −
√
−3(st)−1(1 + s− t), b2 = 0,

and the solutions for the various products δaδb are given in the equalities Ea,b,c,d. Finally,
the solutions for the roots follows by inverting the definitions of the ri,j in Table (7.2).
There are 27 solutions for the ri,j from inverting the definitions of the zi and zī. We begin
by fixing cube roots 3

√
z1 = 3

√
r2,0 3
√
r2,1 3
√
r2,2, with similar equations for the other zi and zī.

With these choices of the cube roots, we notice that (7.6) is immediately a correct solution
for x1, and that

3
√
z1

3
√
z2

3
√
z3

3
√
z4

3
√
z1̄

3
√
z2̄

3
√
z3̄

3
√
z4̄ = r0,1r0,2r1,0r2,0r1,2r2,1r1,1r2,2

= (y1 + 1)(y2 + 1)(y3 + 1)(y4 + 1)

= 1− 6s− 3s2 + 4st.

Without this constraint, the right hand side of (7.6) has 27 values if all possible cube roots
are considered. Thus, when choosing arbitrary cube roots of the zi and zī, this condition
needs to be enforced so that the expression in (7.6) has only nine possible values. �
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